Estimating Individual-Level Exposure to Airborne Polycyclic Aromatic Hydrocarbons throughout the Gestational Period Based on Personal, Indoor, and Outdoor Monitoring
Objectives: Current understanding on health effects of long-term polycyclic aromatic hydrocarbon (PAH) exposure is limited by lack of data on time-varying nature of the pollutants at an individual level. In a cohort of pregnant women in Krakow, Poland, we examined the contribution of temporal, spati...
Saved in:
Published in: | Environmental health perspectives Vol. 116; no. 11; pp. 1509 - 1518 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
National Institute of Environmental Health Sciences. National Institutes of Health. Department of Health, Education and Welfare
01-11-2008
National Institute of Environmental Health Sciences |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Objectives: Current understanding on health effects of long-term polycyclic aromatic hydrocarbon (PAH) exposure is limited by lack of data on time-varying nature of the pollutants at an individual level. In a cohort of pregnant women in Krakow, Poland, we examined the contribution of temporal, spatial, and behavioral factors to prenatal exposure to airborne PAHs within each trimester and developed a predictive model of PAH exposure over the entire gestational period. Methods: We monitored nonsmoking pregnant women (n = 341) for their personal exposure to pyrene and eight carcinogenic PAHs-benz[a]anthracene, chrysene/isochrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene [B(a)P], indeno[1,2,3-c,d]pyrene, dibenz[a,h]anthracene, and benzo[g,h,i]perylene-during their second trimester for a consecutive 48-hr period. In a subset (n = 78), we monitored indoor and outdoor levels simultaneously with the personal monitoring during the second trimester with an identical monitor. The subset of women was also monitored for personal exposure for a 48-hr period during each trimester. We repeatedly administered a questionnaire on health history, lifestyle, and home environment. Results: The observed personal, indoor, and outdoor B(a)P levels we observed in Krakow far exceed the recommended Swedish guideline value for B(a)P of 0.1 ng/m³. Based on simultaneously monitored levels, the outdoor PAH level alone accounts for 93% of total variability in personal exposure during the heating season. Living near the Krakow bus depot, a crossroad, and the city center and time spent outdoors or commuting were not associated with higher personal exposure. During the nonheating season only, a 1-hr increase in environmental tobacco smoke (ETS) exposure was associated with a 10-16% increase in personal exposure to the nine measured PAHs. A 1°C decrease in ambient temperature was associated with a 3-5% increase in exposure to benz[a]anthracene, benzo[k]fluoranthene, and dibenz[a,h]anthracene, after accounting for the outdoor concentration. A random effects model demonstrated that mean personal exposure at a given gestational period depends on the season, residence location, and ETS. Conclusion: Considering that most women reported spending < 3 hr/day outdoors, most women in the study were exposed to outdoor-originating PAHs within the indoor setting. Cross-sectional, longitudinal monitoring supplemented with questionnaire data allowed development of a gestation-length model of individual-level exposure with high precision and validity. These results are generalizable to other nonsmoking pregnant women in similar exposure settings and support reduction of exposure to protect the developing fetus. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 The authors declare they have no competing financial interests. |
ISSN: | 0091-6765 1552-9924 |
DOI: | 10.1289/ehp.10972 |