The natural sequence of events in larval settlement and metamorphosis of Hydroides elegans (Polychaeta; Serpulidae)

The broadly distributed serpulid worm Hydroides elegans has become a model organism for studies of marine biofouling, development and the processes of larval settlement and metamorphosis induced by surface microbial films. Contrasting descriptions of the initial events of these recruitment processes...

Full description

Saved in:
Bibliographic Details
Published in:PloS one Vol. 16; no. 5; p. e0249692
Main Authors: Hadfield, Michael G, Freckelton, Marnie L, Nedved, Brian T
Format: Journal Article
Language:English
Published: United States Public Library of Science 13-05-2021
Public Library of Science (PLoS)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The broadly distributed serpulid worm Hydroides elegans has become a model organism for studies of marine biofouling, development and the processes of larval settlement and metamorphosis induced by surface microbial films. Contrasting descriptions of the initial events of these recruitment processes, whether settlement is induced by (1) natural multi-species biofilms, (2) biofilms composed of single bacterial species known to induce settlement, or (3) a bacterial extract stimulated the research described here. We found that settlement induced by natural biofilms or biofilms formed by the bacterium Pseudoalteromonas luteoviolacea is invariably initiated by attachment and secretion of an adherent and larva-enveloping primary tube, followed by loss of motile cilia and ciliated cells and morphogenesis. The bacterial extract containing complex tailocin arrays derived from an assemblage of phage genes incorporated into the bacterial genome appears to induce settlement events by destruction of larval cilia and ciliated cells, followed by attachment and primary-tube formation. Similar destruction occurred when precompetent larvae of H. elegans or larvae of a nudibranch gastropod were exposed to the extract, although neither of them metamorphosed. We argue that larvae that lose their cilia before attachment would be swept away from the sites that stimulated settlement by the turbulent flow characteristic of most marine habitats.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0249692