Evidence of expanded host range and mammalian-associated genetic changes in a duck H9N2 influenza virus following adaptation in quail and chickens

H9N2 avian influenza viruses continue to circulate worldwide; in Asia, H9N2 viruses have caused disease outbreaks and established lineages in land-based poultry. Some H9N2 strains are considered potentially pandemic because they have infected humans causing mild respiratory disease. In addition, som...

Full description

Saved in:
Bibliographic Details
Published in:PloS one Vol. 3; no. 9; p. e3170
Main Authors: Hossain, Md Jaber, Hickman, Danielle, Perez, Daniel R
Format: Journal Article
Language:English
Published: United States Public Library of Science 09-09-2008
Public Library of Science (PLoS)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:H9N2 avian influenza viruses continue to circulate worldwide; in Asia, H9N2 viruses have caused disease outbreaks and established lineages in land-based poultry. Some H9N2 strains are considered potentially pandemic because they have infected humans causing mild respiratory disease. In addition, some of these H9N2 strains replicate efficiently in mice without prior adaptation suggesting that H9N2 strains are expanding their host range. In order to understand the molecular basis of the interspecies transmission of H9N2 viruses, we adapted in the laboratory a wildtype duck H9N2 virus, influenza A/duck/Hong Kong/702/79 (WT702) virus, in quail and chickens through serial lung passages. We carried out comparative analysis of the replication and transmission in quail and chickens of WT702 and the viruses obtained after 23 serial passages in quail (QA23) followed by 10 serial passages in chickens (QA23CkA10). Although the WT702 virus can replicate and transmit in quail, it replicates poorly and does not transmit in chickens. In contrast, the QA23CkA10 virus was very efficient at replicating and transmitting in quail and chickens. Nucleotide sequence analysis of the QA23 and QA23CkA10 viruses compared to the WT702 virus indicated several nucleotide substitutions resulting in amino acid changes within the surface and internal proteins. In addition, a 21-amino acid deletion was found in the stalk of the NA protein of the QA23 virus and was maintained without further modification in the QA23CkA10 adapted virus. More importantly, both the QA23 and the QA23CkA10 viruses, unlike the WT702 virus, were able to readily infect mice, produce a large-plaque phenotype, showed faster replication kinetics in tissue culture, and resulted in the quick selection of the K627 amino acid mammalian-associated signature in PB2. These results are in agreement with the notion that adaptation of H9 viruses to land-based birds can lead to strains with expanded host range.
Bibliography:Current address: Molecular Virology and Vaccines Branch, Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
Conceived and designed the experiments: DRP. Performed the experiments: MJH DH. Analyzed the data: MJH DH DRP. Wrote the paper: MJH DH DRP.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0003170