Magnetic Properties of Polyvinyl Alcohol and Doxorubicine Loaded Iron Oxide Nanoparticles for Anticancer Drug Delivery Applications
The current study emphasizes the synthesis of iron oxide nanoparticles (IONPs) and impact of hydrophilic polymer polyvinyl alcohol (PVA) coating concentration as well as anticancer drug doxorubicin (DOX) loading on saturation magnetization for target drug delivery applications. Iron oxide nanopartic...
Saved in:
Published in: | PloS one Vol. 11; no. 6; p. e0158084 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Public Library of Science
27-06-2016
Public Library of Science (PLoS) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The current study emphasizes the synthesis of iron oxide nanoparticles (IONPs) and impact of hydrophilic polymer polyvinyl alcohol (PVA) coating concentration as well as anticancer drug doxorubicin (DOX) loading on saturation magnetization for target drug delivery applications. Iron oxide nanoparticles particles were synthesized by a reformed version of the co-precipitation method. The coating of polyvinyl alcohol along with doxorubicin loading was carried out by the physical immobilization method. X-ray diffraction confirmed the magnetite (Fe3O4) structure of particles that remained unchanged before and after polyvinyl alcohol coating and drug loading. Microstructure and morphological analysis was carried out by transmission electron microscopy revealing the formation of nanoparticles with an average size of 10 nm with slight variation after coating and drug loading. Transmission electron microscopy, energy dispersive, and Fourier transform infrared spectra further confirmed the conjugation of polymer and doxorubicin with iron oxide nanoparticles. The room temperature superparamagnetic behavior of polymer-coated and drug-loaded magnetite nanoparticles were studied by vibrating sample magnetometer. The variation in saturation magnetization after coating evaluated that a sufficient amount of polyvinyl alcohol would be 3 wt. % regarding the externally controlled movement of IONPs in blood under the influence of applied magnetic field for in-vivo target drug delivery. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Competing Interests: The authors have declared that no competing interests exist. Conceived and designed the experiments: MN MAS MA. Performed the experiments: MN MAS MA MSA. Analyzed the data: MN MAS MA AS. Contributed reagents/materials/analysis tools: MN MAS MA SR SN. Wrote the paper: MN MAS MA MSA MM. |
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0158084 |