Population genomic analysis of a bacterial plant pathogen: novel insight into the origin of Pierce's disease of grapevine in the U.S

Invasive diseases present an increasing problem worldwide; however, genomic techniques are now available to investigate the timing and geographical origin of such introductions. We employed genomic techniques to demonstrate that the bacterial pathogen causing Pierce's disease of grapevine (PD)...

Full description

Saved in:
Bibliographic Details
Published in:PloS one Vol. 5; no. 11; p. e15488
Main Authors: Nunney, Leonard, Yuan, Xiaoli, Bromley, Robin, Hartung, John, Montero-Astúa, Mauricio, Moreira, Lisela, Ortiz, Beatriz, Stouthamer, Richard
Format: Journal Article
Language:English
Published: United States Public Library of Science 16-11-2010
Public Library of Science (PLoS)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Invasive diseases present an increasing problem worldwide; however, genomic techniques are now available to investigate the timing and geographical origin of such introductions. We employed genomic techniques to demonstrate that the bacterial pathogen causing Pierce's disease of grapevine (PD) is not native to the US as previously assumed, but descended from a single genotype introduced from Central America. PD has posed a serious threat to the US wine industry ever since its first outbreak in Anaheim, California in the 1880s and continues to inhibit grape cultivation in a large area of the country. It is caused by infection of xylem vessels by the bacterium Xylella fastidiosa subsp. fastidiosa, a genetically distinct subspecies at least 15,000 years old. We present five independent kinds of evidence that strongly support our invasion hypothesis: 1) a genome-wide lack of genetic variability in X. fastidiosa subsp. fastidiosa found in the US, consistent with a recent common ancestor; 2) evidence for historical allopatry of the North American subspecies X. fastidiosa subsp. multiplex and X. fastidiosa subsp. fastidiosa; 3) evidence that X. fastidiosa subsp. fastidiosa evolved in a more tropical climate than X. fastidiosa subsp. multiplex; 4) much greater genetic variability in the proposed source population in Central America, variation within which the US genotypes are phylogenetically nested; and 5) the circumstantial evidence of importation of known hosts (coffee plants) from Central America directly into southern California just prior to the first known outbreak of the disease. The lack of genetic variation in X. fastidiosa subsp. fastidiosa in the US suggests that preventing additional introductions is important since new genetic variation may undermine PD control measures, or may lead to infection of other crop plants through the creation of novel genotypes via inter-subspecific recombination. In general, geographically mixing of previously isolated subspecies should be avoided.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
Conceived and designed the experiments: LN RS. Performed the experiments: XY RB. Analyzed the data: LN XY. Contributed reagents/materials/analysis tools: JH MM-A LM BO. Wrote the paper: LN RS.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0015488