Phosphorylation of WAVE1 regulates actin polymerization and dendritic spine morphology
WAVE1—the Wiskott–Aldrich syndrome protein (WASP)-family verprolin homologous protein 1—is a key regulator of actin-dependent morphological processes in mammals, through its ability to activate the actin-related protein (Arp2/3) complex. Here we show that WAVE1 is phosphorylated at multiple sites by...
Saved in:
Published in: | Nature Vol. 442; no. 7104; pp. 814 - 817 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing
17-08-2006
Nature Publishing Group |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | WAVE1—the Wiskott–Aldrich syndrome protein (WASP)-family verprolin homologous protein 1—is a key regulator of actin-dependent morphological processes in mammals, through its ability to activate the actin-related protein (Arp2/3) complex. Here we show that WAVE1 is phosphorylated at multiple sites by cyclin-dependent kinase 5 (Cdk5) both in vitro and in intact mouse neurons. Phosphorylation of WAVE1 by Cdk5 inhibits its ability to regulate Arp2/3 complex-dependent actin polymerization. Loss of WAVE1 function in vivo or in cultured neurons results in a decrease in mature dendritic spines. Expression of a dephosphorylation-mimic mutant of WAVE1 reverses this loss of WAVE1 function in spine morphology, but expression of a phosphorylation-mimic mutant does not. Cyclic AMP (cAMP) signalling reduces phosphorylation of the Cdk5 sites in WAVE1, and increases spine density in a WAVE1-dependent manner. Our data suggest that phosphorylation/dephosphorylation of WAVE1 in neurons has an important role in the formation of the filamentous actin cytoskeleton, and thus in the regulation of dendritic spine morphology. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
ISSN: | 0028-0836 1476-4687 1476-4679 |
DOI: | 10.1038/nature04976 |