Microbiome meta-analysis and cross-disease comparison enabled by the SIAMCAT machine learning toolbox

The human microbiome is increasingly mined for diagnostic and therapeutic biomarkers using machine learning (ML). However, metagenomics-specific software is scarce, and overoptimistic evaluation and limited cross-study generalization are prevailing issues. To address these, we developed SIAMCAT, a v...

Full description

Saved in:
Bibliographic Details
Published in:Genome Biology Vol. 22; no. 1; p. 93
Main Authors: Wirbel, Jakob, Zych, Konrad, Essex, Morgan, Karcher, Nicolai, Kartal, Ece, Salazar, Guillem, Bork, Peer, Sunagawa, Shinichi, Zeller, Georg
Format: Journal Article
Language:English
Published: England BioMed Central 30-03-2021
BMC
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The human microbiome is increasingly mined for diagnostic and therapeutic biomarkers using machine learning (ML). However, metagenomics-specific software is scarce, and overoptimistic evaluation and limited cross-study generalization are prevailing issues. To address these, we developed SIAMCAT, a versatile R toolbox for ML-based comparative metagenomics. We demonstrate its capabilities in a meta-analysis of fecal metagenomic studies (10,803 samples). When naively transferred across studies, ML models lost accuracy and disease specificity, which could however be resolved by a novel training set augmentation strategy. This reveals some biomarkers to be disease-specific, with others shared across multiple conditions. SIAMCAT is freely available from siamcat.embl.de .
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1474-760X
1474-7596
1474-760X
DOI:10.1186/s13059-021-02306-1