Value-driven attentional capture enhances distractor representations in early visual cortex
When a behaviorally relevant stimulus has been previously associated with reward, behavioral responses are faster and more accurate compared to equally relevant but less valuable stimuli. Conversely, task-irrelevant stimuli that were previously associated with a high reward can capture attention and...
Saved in:
Published in: | PLoS biology Vol. 17; no. 8; p. e3000186 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Public Library of Science
09-08-2019
Public Library of Science (PLoS) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | When a behaviorally relevant stimulus has been previously associated with reward, behavioral responses are faster and more accurate compared to equally relevant but less valuable stimuli. Conversely, task-irrelevant stimuli that were previously associated with a high reward can capture attention and distract processing away from relevant stimuli (e.g., seeing a chocolate bar in the pantry when you are looking for a nice, healthy apple). Although increasing the value of task-relevant stimuli systematically up-regulates neural responses in early visual cortex to facilitate information processing, it is not clear whether the value of task-irrelevant distractors influences behavior via competition in early visual cortex or via competition at later stages of decision-making and response selection. Here, we measured functional magnetic resonance imaging (fMRI) in human visual cortex while subjects performed a value-based learning task, and we applied a multivariate inverted encoding model (IEM) to assess the fidelity of distractor representations in early visual cortex. We found that the fidelity of neural representations related to task-irrelevant distractors increased when the distractors were previously associated with a high reward. This finding suggests that value-driven attentional capture begins with sensory modulations of distractor representations in early areas of visual cortex. |
---|---|
Bibliography: | new_version ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 The authors have declared that no competing interests exist. |
ISSN: | 1545-7885 1544-9173 1545-7885 |
DOI: | 10.1371/journal.pbio.3000186 |