Postprandial PYY increase by resistant starch supplementation is independent of net portal appearance of short-chain fatty acids in pigs

Increased dietary fiber (DF) fermentation and short-chain fatty acid (SCFA) production may stimulate peptide tyrosine-tyrosine (PYY) secretion. In this study, the effects of hindgut SCFA production on postprandial PYY plasma levels were assessed using different experimental diets in a porto-arterial...

Full description

Saved in:
Bibliographic Details
Published in:PloS one Vol. 12; no. 10; p. e0185927
Main Authors: Ingerslev, Anne Krog, Mutt, Shivaprakash Jagalur, Lærke, Helle Nygaard, Hedemann, Mette Skou, Theil, Peter Kappel, Nielsen, Kirstine Lykke, Jørgensen, Henry, Herzig, Karl-Heinz, Bach Knudsen, Knud Erik
Format: Journal Article
Language:English
Published: United States Public Library of Science 05-10-2017
Public Library of Science (PLoS)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Increased dietary fiber (DF) fermentation and short-chain fatty acid (SCFA) production may stimulate peptide tyrosine-tyrosine (PYY) secretion. In this study, the effects of hindgut SCFA production on postprandial PYY plasma levels were assessed using different experimental diets in a porto-arterial catheterized pig model. The pigs were fed experimental diets varying in source and levels of DF for one week in 3×3 Latin square designs. The DF sources were whole-wheat grain, wheat aleurone, rye aleurone-rich flour, rye flakes, and resistant starch. Postprandial blood samples were collected from the catheters and analyzed for PYY levels and net portal appearance (NPA) of PYY was correlated to NPA of SCFA. No significant effects of diets on NPA of PYY were observed (P > 0.05), however, resistant starch supplementation increased postprandial NPA of PYY levels by 37 to 54% compared with rye-based and Western-style control diets (P = 0.19). This increase was caused by higher mesenteric artery and portal vein PYY plasma levels (P < 0.001) and was independent of SCFA absorption (P > 0.05). The PYY levels were higher in response to the second daily meal compared with the first daily meal (P < 0.001), but similar among diets (P > 0.10). In conclusion, the increased postprandial PYY responses in pigs fed with different levels and sources of DF are not caused by an increased SCFA absorption and suggest that other mechanisms such as neural reflexes and possibly an increased flow of digesta in the small intestine may be involved. The content of DF and SCFA production did not affect PYY levels.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
Current Address: Department of Forensic Medicine, Forensic Chemistry, Aarhus University, Aarhus N, Denmark
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0185927