Dynamic aspiration based on Win-Stay-Lose-Learn rule in spatial prisoner's dilemma game

Prisoner's dilemma game is the most commonly used model of spatial evolutionary game which is considered as a paradigm to portray competition among selfish individuals. In recent years, Win-Stay-Lose-Learn, a strategy updating rule base on aspiration, has been proved to be an effective model to...

Full description

Saved in:
Bibliographic Details
Published in:PloS one Vol. 16; no. 1; p. e0244814
Main Authors: Shi, Zhenyu, Wei, Wei, Feng, Xiangnan, Li, Xing, Zheng, Zhiming
Format: Journal Article
Language:English
Published: United States Public Library of Science 04-01-2021
Public Library of Science (PLoS)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Prisoner's dilemma game is the most commonly used model of spatial evolutionary game which is considered as a paradigm to portray competition among selfish individuals. In recent years, Win-Stay-Lose-Learn, a strategy updating rule base on aspiration, has been proved to be an effective model to promote cooperation in spatial prisoner's dilemma game, which leads aspiration to receive lots of attention. In this paper, according to Expected Value Theory and Achievement Motivation Theory, we propose a dynamic aspiration model based on Win-Stay-Lose-Learn rule in which individual's aspiration is inspired by its payoff. It is found that dynamic aspiration has a significant impact on the evolution process, and different initial aspirations lead to different results, which are called Stable Coexistence under Low Aspiration, Dependent Coexistence under Moderate aspiration and Defection Explosion under High Aspiration respectively. Furthermore, a deep analysis is performed on the local structures which cause defectors' re-expansion, the concept of END- and EXP-periods are used to justify the mechanism of network reciprocity in view of time-evolution, typical feature nodes for defectors' re-expansion called Infectors, Infected nodes and High-risk cooperators respectively are found. Compared to fixed aspiration model, dynamic aspiration introduces a more satisfactory explanation on population evolution laws and can promote deeper comprehension for the principle of prisoner's dilemma.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0244814