Bird-building collision risk: An assessment of the collision risk of birds with buildings by phylogeny and behavior using two citizen-science datasets

Bird collisions with buildings are the second largest anthropogenic source of direct mortality for birds (365-988 million birds killed annually in the United States). Recent research suggests that this mortality occurs disproportionately across species. However, previous work had relied on regional...

Full description

Saved in:
Bibliographic Details
Published in:PloS one Vol. 13; no. 8; p. e0201558
Main Authors: Nichols, K Samantha, Homayoun, Tania, Eckles, Joanna, Blair, Robert B
Format: Journal Article
Language:English
Published: United States Public Library of Science 09-08-2018
Public Library of Science (PLoS)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Bird collisions with buildings are the second largest anthropogenic source of direct mortality for birds (365-988 million birds killed annually in the United States). Recent research suggests that this mortality occurs disproportionately across species. However, previous work had relied on regional and annual measures of relative species abundance. Our research identifies which species experience higher or lower collision rates than expected from local abundances using two sets of citizen science data: Minnesota Project BirdSafe and the Mississippi River Twin Cities Important Bird Area Landbird Monitoring Program. Our analysis used a measure of relative species abundance that spatially overlaps the area monitored for building collisions and was measured weekly, allowing for a temporally and spatially more specific analysis than most previous analyses. Abundance and collision data were used to model phylogenetic and behavioral traits associated with increased collision risk. Behavioral traits included diurnal/nocturnal migration timing, length of migration, and foraging strategies. Our analysis shows that birds that predominately migrate during the day have a decreased risk of building collisions despite peak collision numbers occurring during early morning; this result suggests that more nuanced behavioral or physiological differences between diurnal and nocturnal migrants could contribute to bird-building collision risk. Additionally, for many species, local abundance is the predominant determining factor for collision risk. However, for ~20% of species studied, the family, genus, and/or species of a bird may affect the collision risk.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0201558