Proteomics biomarker discovery for individualized prevention of familial pancreatic cancer using statistical learning

The low five-year survival rate of pancreatic ductal adenocarcinoma (PDAC) and the low diagnostic rate of early-stage PDAC via imaging highlight the need to discover novel biomarkers and improve the current screening procedures for early diagnosis. Familial pancreatic cancer (FPC) describes the case...

Full description

Saved in:
Bibliographic Details
Published in:PloS one Vol. 18; no. 1; p. e0280399
Main Authors: Ha, Chung Shing Rex, Müller-Nurasyid, Martina, Petrera, Agnese, Hauck, Stefanie M, Marini, Federico, Bartsch, Detlef K, Slater, Emily P, Strauch, Konstantin
Format: Journal Article
Language:English
Published: United States Public Library of Science 26-01-2023
Public Library of Science (PLoS)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The low five-year survival rate of pancreatic ductal adenocarcinoma (PDAC) and the low diagnostic rate of early-stage PDAC via imaging highlight the need to discover novel biomarkers and improve the current screening procedures for early diagnosis. Familial pancreatic cancer (FPC) describes the cases of PDAC that are present in two or more individuals within a circle of first-degree relatives. Using innovative high-throughput proteomics, we were able to quantify the protein profiles of individuals at risk from FPC families in different potential pre-cancer stages. However, the high-dimensional proteomics data structure challenges the use of traditional statistical analysis tools. Hence, we applied advanced statistical learning methods to enhance the analysis and improve the results' interpretability. We applied model-based gradient boosting and adaptive lasso to deal with the small, unbalanced study design via simultaneous variable selection and model fitting. In addition, we used stability selection to identify a stable subset of selected biomarkers and, as a result, obtain even more interpretable results. In each step, we compared the performance of the different analytical pipelines and validated our approaches via simulation scenarios. In the simulation study, model-based gradient boosting showed a more accurate prediction performance in the small, unbalanced, and high-dimensional datasets than adaptive lasso and could identify more relevant variables. Furthermore, using model-based gradient boosting, we discovered a subset of promising serum biomarkers that may potentially improve the current screening procedure of FPC. Advanced statistical learning methods helped us overcome the shortcomings of an unbalanced study design in a valuable clinical dataset. The discovered serum biomarkers provide us with a clear direction for further investigations and more precise clinical hypotheses regarding the development of FPC and optimal strategies for its early detection.
Bibliography:Competing Interests: The authors have declared that no competing interests exist.
These authors also contributed equally to this work.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0280399