Blinded prospective evaluation of computer-based mechanistic schizophrenia disease model for predicting drug response
The tremendous advances in understanding the neurobiological circuits involved in schizophrenia have not translated into more effective treatments. An alternative strategy is to use a recently published 'Quantitative Systems Pharmacology' computer-based mechanistic disease model of cortica...
Saved in:
Published in: | PloS one Vol. 7; no. 12; p. e49732 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Public Library of Science
14-12-2012
Public Library of Science (PLoS) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The tremendous advances in understanding the neurobiological circuits involved in schizophrenia have not translated into more effective treatments. An alternative strategy is to use a recently published 'Quantitative Systems Pharmacology' computer-based mechanistic disease model of cortical/subcortical and striatal circuits based upon preclinical physiology, human pathology and pharmacology. The physiology of 27 relevant dopamine, serotonin, acetylcholine, norepinephrine, gamma-aminobutyric acid (GABA) and glutamate-mediated targets is calibrated using retrospective clinical data on 24 different antipsychotics. The model was challenged to predict quantitatively the clinical outcome in a blinded fashion of two experimental antipsychotic drugs; JNJ37822681, a highly selective low-affinity dopamine D(2) antagonist and ocaperidone, a very high affinity dopamine D(2) antagonist, using only pharmacology and human positron emission tomography (PET) imaging data. The model correctly predicted the lower performance of JNJ37822681 on the positive and negative syndrome scale (PANSS) total score and the higher extra-pyramidal symptom (EPS) liability compared to olanzapine and the relative performance of ocaperidone against olanzapine, but did not predict the absolute PANSS total score outcome and EPS liability for ocaperidone, possibly due to placebo responses and EPS assessment methods. Because of its virtual nature, this modeling approach can support central nervous system research and development by accounting for unique human drug properties, such as human metabolites, exposure, genotypes and off-target effects and can be a helpful tool for drug discovery and development. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 Conceived and designed the experiments: HG AS PR. Performed the experiments: HG. Analyzed the data: HG AS PR RT LA. Contributed reagents/materials/analysis tools: HG AS PR RT LA AG. Wrote the paper: HG AG. Competing Interests: The authors have read the journal's policy and have the following conflicts: H.G., A.S. and P.R. are employees of In Silico Biosciences, the funder of this study. R.T. is an employee of J&J, L.A. is an employee of Janssen Scientific Affairs and A.G. is a consultant for J&J and Lundbeck and has financial relationships with Johnson & Johnson, Lundbeck, Pfizer, GSK, Puretech Ventures, Merck, Takeda, and Dainippon Sumimoto. The computer-based platform is covered by the recently granted US patent “Method and apparatus for computer modeling of the interaction between cortical and subcortical areas in the human brain” - Hugo Geerts, Athan Spiros. PCT/US2006/043887, US patent 8,150,629 B2, granted on April 30, 2012.” A patent for the composition of matter for JNJ37822681 has been applied for. There are no further patents, products in development or marketed products to declare. This does not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials. |
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0049732 |