Comparison of TaqMan, KASP and rhAmp SNP genotyping platforms in hexaploid wheat
Advances in high-throughput genotyping enable the generation of genome-scale data much more easily and at lower cost than ever before. However, small-scale and cost-effective high-throughput single-nucleotide polymorphism (SNP) genotyping technologies are still under development. In this study, we c...
Saved in:
Published in: | PloS one Vol. 14; no. 5; p. e0217222 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Public Library of Science
22-05-2019
Public Library of Science (PLoS) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Advances in high-throughput genotyping enable the generation of genome-scale data much more easily and at lower cost than ever before. However, small-scale and cost-effective high-throughput single-nucleotide polymorphism (SNP) genotyping technologies are still under development. In this study, we compared the performances of TaqMan, KASP and rhAmp SNP genotyping platforms in terms of their assay design flexibility, assay design success rate, allele call rate and quality, ease of experiment run and cost per sample. Fifty SNP markers linked to genes governing various agronomic traits of wheat were chosen to design SNP assays. Design success rates were 39/50, 49/50, and 49/50 for TaqMan, KASP, and rhAmp, respectively, and 30 SNP assays were manufactured for genotyping comparisons across the three platforms. rhAmp showed 97% of samples amplified while TaqMan and KASP showed 93% and 93.5% of amplifications, respectively. Allele call quality of rhAmp was 97%, while it was 98% for both TaqMan and KASP. rhAmp and KASP showed significantly better (p < 0.001) allele discrimination than TaqMan; however, TaqMan showed the most compact cluster. Based on the current market, rhAmp was the least expensive technology followed by KASP. In conclusion, rhAmp provides a reliable and cost-effective option for targeted genotyping and marker-assisted selection in crop genetic improvement. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Competing Interests: I have read the journal’s policy and the authors of this manuscript have the following competing interests: Pak Wah Tsang, Junzhou Wang and Caifu Chen were employed by Integrated DNA Technologies at the time of study. Integrated DNA Technologies has patent application (20170145486, 20170253925, and 20170260583). This does not alter our adherence to PLOS ONE policies on sharing data and materials. |
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0217222 |