Diet with diphenyl diselenide mitigates quinclorac toxicity in silver catfish (Rhamdia quelen)

In this study, the protective effects of diphenyl diselenide [(PhSe)2] on quinclorac- induced toxicity were investigated in silver catfish (Rhamdia quelen). The fish were fed for 60 days with a diet in the absence or in the presence of 3.0 mg/Kg (PhSe)2. Animals were further exposed to 1 mg/L quincl...

Full description

Saved in:
Bibliographic Details
Published in:PloS one Vol. 9; no. 12; p. e114233
Main Authors: Menezes, Charlene, Ruiz-Jarabo, Ignacio, Martos-Sitcha, Juan Antonio, Leitemperger, Jossiele, Baldisserotto, Bernardo, Mancera, Juan Miguel, Rosemberg, Denis Broock, Loro, Vania Lucia
Format: Journal Article
Language:English
Published: United States Public Library of Science 03-12-2014
Public Library of Science (PLoS)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, the protective effects of diphenyl diselenide [(PhSe)2] on quinclorac- induced toxicity were investigated in silver catfish (Rhamdia quelen). The fish were fed for 60 days with a diet in the absence or in the presence of 3.0 mg/Kg (PhSe)2. Animals were further exposed to 1 mg/L quinclorac for 8 days. At the end of experimental period, fish were euthanized and biopsies from liver and gills, as well as blood samples, were collected. The cortisol and metabolic parameters were determined in plasma, and those enzyme activities related to osmoregulation were assayed in the gills. In liver, some important enzyme activities of the intermediary metabolism and oxidative stress-related parameters, such as thiobarbituric acid-reactive substance (TBARS), protein carbonyl, catalase (CAT), superoxide dismutase (SOD), glutathione S-transferase (GST), nonprotein thiols (NPSH) and ascorbic acid contents were also evaluated. Compared to the control group, quinclorac exposure significantly decreased hepatosomatic index and increased cortisol and lactate values in plasma. Moreover, the activities of fructose biphosphatase (FBPase), glucose-6-phosphate dehydrogenase (G6Pase), glycogen phosphorilase (GPase) and aspartate aminotransferase (AST) were significantly increased in liver. Quinclorac also induced lipid peroxidation while the activity of SOD, NPSH and ascorbic acid levels decreased in the liver. However, dietary (PhSe)2 reduced the herbicide-induced effects on the studied parameters. In conclusion, (PhSe)2 has beneficial properties based on its ability to attenuate toxicity induced by quinclorac by regulating energy metabolism and oxidative stress-related parameters.
Bibliography:Competing Interests: The authors have declared that no competing interests exist.
Conceived and designed the experiments: CM IR JAM. Performed the experiments: CM IR JAM JL. Analyzed the data: CM IR BB JMM DR VL. Contributed reagents/materials/analysis tools: BB JMM VL. Wrote the paper: CM IR JAM BB JMM DR VL.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0114233