Functional characterization of the cardiac ryanodine receptor pore-forming region

Ryanodine receptors are homotetrameric intracellular calcium release channels. The efficiency of these channels is underpinned by exceptional rates of cation translocation through the open channel and this is achieved at the expense of the high degree of selectivity characteristic of many other type...

Full description

Saved in:
Bibliographic Details
Published in:PloS one Vol. 8; no. 6; p. e66542
Main Authors: Euden, Joanne, Mason, Sammy A, Williams, Alan J
Format: Journal Article
Language:English
Published: United States Public Library of Science 12-06-2013
Public Library of Science (PLoS)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ryanodine receptors are homotetrameric intracellular calcium release channels. The efficiency of these channels is underpinned by exceptional rates of cation translocation through the open channel and this is achieved at the expense of the high degree of selectivity characteristic of many other types of channel. Crystallization of prokaryotic potassium channels has provided insights into the structures and mechanisms responsible for ion selection and movement in these channels, however no equivalent structural detail is currently available for ryanodine receptors. Nevertheless both molecular modeling and cryo-electron microscopy have identified the probable pore-forming region (PFR) of the ryanodine receptor (RyR) and suggest that this region contains structural elements equivalent to those of the PFRs of potassium-selective channels. The aim of the current study was to establish if the isolated putative cardiac RyR (RyR2) PFR could form a functional ion channel. We have expressed and purified the RyR2 PFR and shown that function is retained following reconstitution into planar phospholipid bilayers. Our data provide the first direct experimental evidence to support the proposal that the conduction pathway of RyR2 is formed by structural elements equivalent to those of the potassium channel PFR.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
Conceived and designed the experiments: JE AJW. Performed the experiments: JE SAM. Analyzed the data: JE. Contributed reagents/materials/analysis tools: JE SAM AJW. Wrote the paper: JE AJW.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0066542