A multivariate predictive modeling approach reveals a novel CSF peptide signature for both Alzheimer's Disease state classification and for predicting future disease progression
To determine if a multi-analyte cerebrospinal fluid (CSF) peptide signature can be used to differentiate Alzheimer's Disease (AD) and normal aged controls (NL), and to determine if this signature can also predict progression from mild cognitive impairment (MCI) to AD, analysis of CSF samples wa...
Saved in:
Published in: | PloS one Vol. 12; no. 8; p. e0182098 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Public Library of Science
03-08-2017
Public Library of Science (PLoS) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To determine if a multi-analyte cerebrospinal fluid (CSF) peptide signature can be used to differentiate Alzheimer's Disease (AD) and normal aged controls (NL), and to determine if this signature can also predict progression from mild cognitive impairment (MCI) to AD, analysis of CSF samples was done on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. The profiles of 320 peptides from baseline CSF samples of 287 subjects over a 3-6 year period were analyzed. As expected, the peptide most able to differentiate between AD vs. NL was found to be Apolipoprotein E. Other peptides, some of which are not classically associated with AD, such as heart fatty acid binding protein, and the neuronal pentraxin receptor, also differentiated disease states. A sixteen-analyte signature was identified which differentiated AD vs. NL with an area under the receiver operating characteristic curve of 0.89, which was better than any combination of amyloid beta (1-42), tau, and phospho-181 tau. This same signature, when applied to a new and independent data set, also strongly predicted both probability and rate of future progression of MCI subjects to AD, better than traditional markers. These data suggest that multivariate peptide signatures from CSF predict MCI to AD progression, and point to potentially new roles for certain proteins not typically associated with AD. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Competing Interests: Funding for this work was derived in part from the following commercial sources: Araclon Biotech; BioClinica, Inc.;Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. Funding from these sources does not alter our adherence to PLOS ONE policies on sharing data and materials. Current address: Excelra. Hyderabad, India Membership of the Alzheimer’s Disease Neuroimaging Initiative is provided in the Acknowledgments. |
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0182098 |