SSR marker development in Clerodendrum trichotomum using transcriptome sequencing
Clerodendrum trichotomum, a member of the Lamiaceae (Verbenaceae) family, is an ornamental plant widely distributed in South Asia. Previous studies have focused primarily on its growth characteristics, stress resistance, and pharmacological applications; however, molecular investigations remain limi...
Saved in:
Published in: | PloS one Vol. 14; no. 11; p. e0225451 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Public Library of Science
20-11-2019
Public Library of Science (PLoS) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Clerodendrum trichotomum, a member of the Lamiaceae (Verbenaceae) family, is an ornamental plant widely distributed in South Asia. Previous studies have focused primarily on its growth characteristics, stress resistance, and pharmacological applications; however, molecular investigations remain limited. Considering germplasm conservation and the extensive applications of this plant, it is necessary to explore transcriptome resources and SSR makers for C. trichotomum. In the present study, RNA sequencing was used to determine the transcriptome of C. trichotomum. Subsequently, unigene annotations and classifications were obtained, and SSRs were mined with MIcroSAtellite. Finally, primer pairs designed with Oligo 6.0 were selected for polymorphism validation. In total, 127,325,666 high-quality reads were obtained, and 58,345 non-redundant unigenes were generated, of which 36,900 (63.24%) were annotated. Among the annotated unigenes, 35,980 (97.51%) had significant similarity to 607 species in Nr databases. In addition, a total of 6,444 SSRs were identified in 5,530 unigenes, and 200 random primer pairs were designed for polymorphism validation. Furthermore, after primary polymorphism identification, 30 polymorphic primer pairs were selected for the further polymorphism screening, and 200 alleles were identified, 197 of which showed polymorphism. In this work, a large number of unigenes were generated, and numerous SSRs were detected. These findings should be beneficial for further investigations into germplasm conservation and various applications of C. trichotomum. These results should also provide a solid foundation for future molecular biology studies in C. trichotomum. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0225451 |