Evidence of a causal and modifiable relationship between kidney function and circulating trimethylamine N-oxide

The host-microbiota co-metabolite trimethylamine N -oxide (TMAO) is linked to increased cardiovascular risk but how its circulating levels are regulated remains unclear. We applied “explainable” machine learning, univariate, multivariate and mediation analyses of fasting plasma TMAO concentration an...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications Vol. 14; no. 1; p. 5843
Main Authors: Andrikopoulos, Petros, Aron-Wisnewsky, Judith, Chakaroun, Rima, Myridakis, Antonis, Forslund, Sofia K., Nielsen, Trine, Adriouch, Solia, Holmes, Bridget, Chilloux, Julien, Vieira-Silva, Sara, Falony, Gwen, Salem, Joe-Elie, Andreelli, Fabrizio, Belda, Eugeni, Kieswich, Julius, Chechi, Kanta, Puig-Castellvi, Francesc, Chevalier, Mickael, Le Chatelier, Emmanuelle, Olanipekun, Michael T., Hoyles, Lesley, Alves, Renato, Helft, Gerard, Isnard, Richard, Køber, Lars, Coelho, Luis Pedro, Rouault, Christine, Gauguier, Dominique, Gøtze, Jens Peter, Prifti, Edi, Froguel, Philippe, Zucker, Jean-Daniel, Bäckhed, Fredrik, Vestergaard, Henrik, Hansen, Torben, Oppert, Jean-Michel, Blüher, Matthias, Nielsen, Jens, Raes, Jeroen, Bork, Peer, Yaqoob, Muhammad M., Stumvoll, Michael, Pedersen, Oluf, Ehrlich, S. Dusko, Clément, Karine, Dumas, Marc-Emmanuel
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 20-09-2023
Nature Publishing Group
Nature Portfolio
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The host-microbiota co-metabolite trimethylamine N -oxide (TMAO) is linked to increased cardiovascular risk but how its circulating levels are regulated remains unclear. We applied “explainable” machine learning, univariate, multivariate and mediation analyses of fasting plasma TMAO concentration and a multitude of phenotypes in 1,741 adult Europeans of the MetaCardis study. Here we show that next to age, kidney function is the primary variable predicting circulating TMAO, with microbiota composition and diet playing minor, albeit significant, roles. Mediation analysis suggests a causal relationship between TMAO and kidney function that we corroborate in preclinical models where TMAO exposure increases kidney scarring. Consistent with our findings, patients receiving glucose-lowering drugs with reno-protective properties have significantly lower circulating TMAO when compared to propensity-score matched control individuals. Our analyses uncover a bidirectional relationship between kidney function and TMAO that can potentially be modified by reno-protective anti-diabetic drugs and suggest a clinically actionable intervention for decreasing TMAO-associated excess cardiovascular risk. TMAO is known to be atherothrombotic. Here the authors show that i) kidney function is the main determinant of serum TMAO, ii) TMAO increases kidney scarring with TGF-β1 signalling and iii) anti-diabetic drugs with reno-protective properties such as GLP1R agonists reduce plasma TMAO.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-023-39824-4