Reconstruction of non-classical cavity field states with snapshots of their decoherence

The state of a microscopic system encodes its complete quantum description, from which the probabilities of all measurement outcomes are inferred. Being a statistical concept, the state cannot be obtained from a single system realization, but can instead be reconstructed from an ensemble of copies t...

Full description

Saved in:
Bibliographic Details
Published in:Nature (London) Vol. 455; no. 7212; pp. 510 - 514
Main Authors: Bernu, Julien, Dotsenko, Igor, Brune, Michel, Haroche, Serge, Sayrin, Clément, Deléglise, Samuel, Raimond, Jean-Michel
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 25-09-2008
Nature Publishing
Nature Publishing Group
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The state of a microscopic system encodes its complete quantum description, from which the probabilities of all measurement outcomes are inferred. Being a statistical concept, the state cannot be obtained from a single system realization, but can instead be reconstructed from an ensemble of copies through measurements on different realizations. Reconstructing the state of a set of trapped particles shielded from their environment is an important step in the investigation of the quantum-classical boundary. Although trapped-atom state reconstructions have been achieved, it is challenging to perform similar experiments with trapped photons because cavities that can store light for very long times are required. Here we report the complete reconstruction and pictorial representation of a variety of radiation states trapped in a cavity in which several photons survive long enough to be repeatedly measured. Atoms crossing the cavity one by one are used to extract information about the field. We obtain images of coherent states, Fock states with a definite photon number and 'Schrödinger cat' states (superpositions of coherent states with different phases). These states are equivalently represented by their density matrices or Wigner functions. Quasi-classical coherent states have a Gaussian-shaped Wigner function, whereas the Wigner functions of Fock and Schrödinger cat states show oscillations and negativities revealing quantum interferences. Cavity damping induces decoherence that quickly washes out such oscillations. We observe this process and follow the evolution of decoherence by reconstructing snapshots of Schrödinger cat states at successive times. Our reconstruction procedure is a useful tool for further decoherence and quantum feedback studies of fields trapped in one or two cavities.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0028-0836
1476-4687
DOI:10.1038/nature07288