In vivo recellularization of xenogeneic vascular grafts decellularized with high hydrostatic pressure method in a porcine carotid arterial interpose model

Autologous vascular grafts are widely used in revascularization surgeries for small caliber targets. However, the availability of autologous conduits might be limited due to prior surgeries or the quality of vessels. Xenogeneic decellularized vascular grafts from animals can potentially be a substit...

Full description

Saved in:
Bibliographic Details
Published in:PloS one Vol. 16; no. 7; p. e0254160
Main Authors: Kurokawa, Shunji, Hashimoto, Yoshihide, Funamoto, Seiichi, Murata, Kozue, Yamashita, Akitatsu, Yamazaki, Kazuhiro, Ikeda, Tadashi, Minatoya, Kenji, Kishida, Akio, Masumoto, Hidetoshi
Format: Journal Article
Language:English
Published: San Francisco Public Library of Science 22-07-2021
Public Library of Science (PLoS)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Autologous vascular grafts are widely used in revascularization surgeries for small caliber targets. However, the availability of autologous conduits might be limited due to prior surgeries or the quality of vessels. Xenogeneic decellularized vascular grafts from animals can potentially be a substitute of autologous vascular grafts. Decellularization with high hydrostatic pressure (HHP) is reported to highly preserve extracellular matrix (ECM), creating feasible conditions for recellularization and vascular remodeling after implantation. In the present study, we conducted xenogeneic implantation of HHP-decellularized bovine vascular grafts from dorsalis pedis arteries to porcine carotid arteries and posteriorly evaluated graft patency, ECM preservation and recellularization. Avoiding damage of the luminal surface of the grafts from drying significantly during the surgical procedure increased the graft patency at 4 weeks after implantation (P = 0.0079). After the technical improvement, all grafts (N = 5) were patent with mild stenosis due to intimal hyperplasia at 4 weeks after implantation. Neither aneurysmal change nor massive thrombosis was observed, even without administration of anticoagulants nor anti-platelet agents. Elastica van Gieson and Sirius-red stainings revealed fair preservation of ECM proteins including elastin and collagen after implantation. The luminal surface of the grafts were thoroughly covered with von Willebrand factor-positive endothelium. Scanning electron microscopy of the luminal surface of implanted grafts exhibited a cobblestone-like endothelial cell layer which is similar to native vascular endothelium. Recellularization of the tunica media with alpha-smooth muscle actin-positive smooth muscle cells was partly observed. Thus, we confirmed that HHP-decellularized grafts are feasible for xenogeneic implantation accompanied by recellularization by recipient cells.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0254160