Ventricular outflow tract obstruction: An in-silico model to relate the obstruction to hemodynamic quantities in cardiac paediatric patients

Background Right (R) or left (L) ventricular outflow tract (VOT) obstruction can be either a dynamic phenomenon or a congenital anatomic lesion, which requires a prompt and optimal timing of treatment to avoid a pathological ventricular remodelling. Objective To develop a simple and reliable numeric...

Full description

Saved in:
Bibliographic Details
Published in:PloS one Vol. 16; no. 10; p. e0258225
Main Authors: Comunale, Giulia, Padalino, Massimo, Maiorana, Carmelo, Di Salvo, Giovanni, Susin, Francesca M
Format: Journal Article
Language:English
Published: San Francisco Public Library of Science 15-10-2021
Public Library of Science (PLoS)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background Right (R) or left (L) ventricular outflow tract (VOT) obstruction can be either a dynamic phenomenon or a congenital anatomic lesion, which requires a prompt and optimal timing of treatment to avoid a pathological ventricular remodelling. Objective To develop a simple and reliable numerical tool able to relate the R/L obstruction size with the pressure gradient and the cardiac output. To provide indication of the obstruction severity and be of help in the clinical management of patients and designing the surgical treatment for obstruction mitigation. Methods Blood flow across the obstruction is described according to the classical theory of one-dimensional flow, with the obstruction uniquely characterized by its size. Hemodynamics of complete circulation is simulated according to the lumped parameter approach. The case of a 2 years-old baby is reproduced, with the occlusion placed in either the R/ or the L/VOT. Conditions from wide open to almost complete obstruction are reproduced. Results Both R/LVOT obstruction in the in-silico model resulted in an increased pressure gradient and a decreased cardiac output, proportional to the severity of the VOT obstruction and dependent on the R/L location of the obstruction itself, as it is clinically observed. Conclusion The in-silico model of ventricular obstruction which simulates pressure gradient and/or cardiac output agrees with clinical data, and is a first step towards the creation of a tool that can support the clinical management of patients from diagnosis to surgical treatments.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0258225