Sociodemographic and clinical features predictive of SARS-CoV-2 test positivity across healthcare visit-types

Background Despite increased testing efforts and the deployment of vaccines, COVID-19 cases and death toll continue to rise at record rates. Health systems routinely collect clinical and non-clinical information in electronic health records (EHR), yet little is known about how the minimal or interme...

Full description

Saved in:
Bibliographic Details
Published in:PloS one Vol. 16; no. 10; p. e0258339
Main Authors: Phuong, Jimmy, Hyland, Stephanie L, Mooney, Stephen J, Long, Dustin R, Takeda, Kenji, Vavilala, Monica S, O'Hara, Kenton
Format: Journal Article
Language:English
Published: San Francisco Public Library of Science 14-10-2021
Public Library of Science (PLoS)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background Despite increased testing efforts and the deployment of vaccines, COVID-19 cases and death toll continue to rise at record rates. Health systems routinely collect clinical and non-clinical information in electronic health records (EHR), yet little is known about how the minimal or intermediate spectra of EHR data can be leveraged to characterize patient SARS-CoV-2 pretest probability in support of interventional strategies. Methods and findings We modeled patient pretest probability for SARS-CoV-2 test positivity and determined which features were contributing to the prediction and relative to patients triaged in inpatient, outpatient, and telehealth/drive-up visit-types. Data from the University of Washington (UW) Medicine Health System, which excluded UW Medicine care providers, included patients predominately residing in the Seattle Puget Sound area, were used to develop a gradient-boosting decision tree (GBDT) model. Patients were included if they had at least one visit prior to initial SARS-CoV-2 RT-PCR testing between January 01, 2020 through August 7, 2020. Model performance assessments used area-under-the-receiver-operating-characteristic (AUROC) and area-under-the-precision-recall (AUPR) curves. Feature performance assessments used SHapley Additive exPlanations (SHAP) values. The generalized pretest probability model using all available features achieved high overall discriminative performance (AUROC, 0.82). Performance among inpatients (AUROC, 0.86) was higher than telehealth/drive-up testing (AUROC, 0.81) or outpatient testing (AUROC, 0.76). The two-week test positivity rate in patient ZIP code was the most informative feature towards test positivity across visit-types. Geographic and sociodemographic factors were more important predictors of SARS-CoV-2 positivity than individual clinical characteristics. Conclusions Recent geographic and sociodemographic factors, routinely collected in EHR though not routinely considered in clinical care, are the strongest predictors of initial SARS-CoV-2 test result. These findings were consistent across visit types, informing our understanding of individual SARS-CoV-2 risk factors with implications for deployment of testing, outreach, and population-level prevention efforts.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0258339