Antiproliferative effect of ascorbic acid is associated with the inhibition of genes necessary to cell cycle progression

Ascorbic acid (AA), or Vitamin C, is most well known as a nutritional supplement with antioxidant properties. Recently, we demonstrated that high concentrations of AA act on PMP22 gene expression and partially correct the Charcot-Marie-Tooth disease phenotype in a mouse model. This is due to the cap...

Full description

Saved in:
Bibliographic Details
Published in:PloS one Vol. 4; no. 2; p. e4409
Main Authors: Belin, Sophie, Kaya, Ferdinand, Duisit, Ghislaine, Giacometti, Sarah, Ciccolini, Joseph, Fontés, Michel
Format: Journal Article
Language:English
Published: United States Public Library of Science 06-02-2009
Public Library of Science (PLoS)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ascorbic acid (AA), or Vitamin C, is most well known as a nutritional supplement with antioxidant properties. Recently, we demonstrated that high concentrations of AA act on PMP22 gene expression and partially correct the Charcot-Marie-Tooth disease phenotype in a mouse model. This is due to the capacity of AA, but not other antioxidants, to down-modulate cAMP intracellular concentration by a competitive inhibition of the adenylate cyclase enzymatic activity. Because of the critical role of cAMP in intracellular signalling, we decided to explore the possibility that ascorbic acid could modulate the expression of other genes. Using human pangenomic microarrays, we found that AA inhibited the expression of two categories of genes necessary for cell cycle progression, tRNA synthetases and translation initiation factor subunits. In in vitro assays, we demonstrated that AA induced the S-phase arrest of proliferative normal and tumor cells. Highest concentrations of AA leaded to necrotic cell death. However, quiescent cells were not susceptible to AA toxicity, suggesting the blockage of protein synthesis was mainly detrimental in metabolically-active cells. Using animal models, we found that high concentrations of AA inhibited tumor progression in nude mice grafted with HT29 cells (derived from human colon carcinoma). Consistently, expression of tRNA synthetases and ieF2 appeared to be specifically decreased in tumors upon AA treatment. AA has an antiproliferative activity, at elevated concentration that could be obtained using IV injection. This activity has been observed in vitro as well in vivo and likely results from the inhibition of expression of genes involved in protein synthesis. Implications for a clinical use in anticancer therapies will be discussed.
Bibliography:Conceived and designed the experiments: SB MF. Performed the experiments: SB FK SG. Analyzed the data: SB FK GD JC MF. Contributed reagents/materials/analysis tools: FK GD SG JC. Wrote the paper: MF.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0004409