RNA-dependent RNA polymerase is an essential component of a self-enforcing loop coupling heterochromatin assembly to siRNA production

In fission yeast, factors involved in the RNA interference (RNAi) pathway including Argonaute, Dicer, and RNA-dependent RNA polymerase are required for heterochromatin assembly at centromeric repeats and the silent mating-type region. Previously, we have shown that RNA-induced initiation of transcri...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS Vol. 102; no. 1; pp. 152 - 157
Main Authors: Sugiyama, T, Cam, H, Verdel, A, Moazed, D, Grewal, S.I.S
Format: Journal Article
Language:English
Published: United States National Academy of Sciences 04-01-2005
National Acad Sciences
Series:From the Cover
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In fission yeast, factors involved in the RNA interference (RNAi) pathway including Argonaute, Dicer, and RNA-dependent RNA polymerase are required for heterochromatin assembly at centromeric repeats and the silent mating-type region. Previously, we have shown that RNA-induced initiation of transcriptional gene silencing (RITS) complex containing the Argonaute protein and small interfering RNAs (siRNAs) localizes to heterochromatic loci and collaborates with heterochromatin assembly factors via a self-enforcing RNAi loop mechanism to couple siRNA generation with heterochromatin formation. Here, we investigate the role of RNA-dependent RNA polymerase (Rdp1) and its polymerase activity in the assembly of heterochromatin. We find that Rdp1, similar to RITS, localizes to all known heterochromatic loci, and its localization at centromeric repeats depends on components of RITS and Dicer as well as heterochromatin assembly factors including Clr4/Suv39h and Swi6/HP1 proteins. We show that a point mutation within the catalytic domain of Rdp1 abolished its RNA-dependent RNA polymerase activity and resulted in the loss of transcriptional silencing and heterochromatin at centromeres, together with defects in mitotic chromosome segregation and telomere clustering. Moreover, the RITS complex in the rdp1 mutant does not contain siRNAs, and is delocalized from centromeres. These results not only implicate Rdp1 as an essential component of a self-enforcing RNAi loop but also ascribe a critical role for its RNA-dependent RNA polymerase activity in siRNA production necessary for heterochromatin formation.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMCID: PMC544066
Author contributions: T.S., H.C., and S.I.S.G. designed research; T.S., H.C., A.V., and S.I.S.G. performed research; T.S. contributed new reagents/analytic tools; T.S. and S.I.S.G. analyzed data; T.S., H.C., and S.I.S.G. wrote the paper.
This paper was submitted directly (Track II) to the PNAS office.
To whom correspondence should be addressed. E-mail: grewals@mail.nih.gov.
Edited by Gary Felsenfeld, National Institutes of Health, Bethesda, MD
Abbreviations: RNAi, RNA interference; RISC, RNA-induced silencing complex; RITS, RNAi effector complex; siRNA, small interfering RNA; RdRP, RNA-dependent RNA polymerase; ChIP, chromatin immunoprecipitation; IF, immunofluorescence.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.0407641102