Acquisition of estrogen independence induces TOB1-related mechanisms supporting breast cancer cell proliferation
Resistance to therapies targeting the estrogen pathway remains a challenge in the treatment of estrogen receptor-positive breast cancer. To address this challenge, a systems biology approach was used. A library of small interfering RNAs targeting an estrogen receptor (ER)- and aromatase-centered net...
Saved in:
Published in: | Oncogene Vol. 35; no. 13; pp. 1643 - 1656 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
31-03-2016
Nature Publishing Group |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Resistance to therapies targeting the estrogen pathway remains a challenge in the treatment of estrogen receptor-positive breast cancer. To address this challenge, a systems biology approach was used. A library of small interfering RNAs targeting an estrogen receptor (ER)- and aromatase-centered network identified 46 genes that are dispensable in estrogen-dependent MCF7 cells, but are selectively required for the survival of estrogen-independent MCF7-derived cells and multiple additional estrogen-independent breast cancer cell lines. Integration of this information identified a tumor suppressor gene
TOB1
as a critical determinant of estrogen-independent ER-positive breast cell survival. Depletion of
TOB1
selectively promoted G1 phase arrest and sensitivity to AKT and mammalian target of rapmycin (mTOR) inhibitors in estrogen-independent cells but not in estrogen-dependent cells. Phosphoproteomic profiles from reverse-phase protein array analysis supported by mRNA profiling identified a significant signaling network reprogramming by TOB1 that differed in estrogen-sensitive and estrogen-resistant cell lines. These data support a novel function for TOB1 in mediating survival of estrogen-independent breast cancers. These studies also provide evidence for combining TOB1 inhibition and AKT/mTOR inhibition as a therapeutic strategy, with potential translational significance for the management of patients with ER-positive breast cancers. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0950-9232 1476-5594 |
DOI: | 10.1038/onc.2015.226 |