Endometrial microbiome at the time of embryo transfer: next-generation sequencing of the 16S ribosomal subunit

Purpose Characterization of the human microbiome has become more precise with the application of powerful molecular tools utilizing the unique 16S ribosomal subunit’s hypervariable regions to greatly increase sensitivity. The microbiome of the lower genital tract can prognosticate obstetrical outcom...

Full description

Saved in:
Bibliographic Details
Published in:Journal of assisted reproduction and genetics Vol. 33; no. 1; pp. 129 - 136
Main Authors: Franasiak, J. M., Werner, M. D., Juneau, C. R., Tao, X., Landis, J., Zhan, Y., Treff, N. R., Scott, R. T.
Format: Journal Article
Language:English
Published: New York Springer US 01-01-2016
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Purpose Characterization of the human microbiome has become more precise with the application of powerful molecular tools utilizing the unique 16S ribosomal subunit’s hypervariable regions to greatly increase sensitivity. The microbiome of the lower genital tract can prognosticate obstetrical outcome while the upper reproductive tract remains poorly characterized. Here, the endometrial microbiome at the time of single embryo transfer (SET) is characterized by reproductive outcome. Methods Consecutive patients undergoing euploid, SET was included in the analysis. After embryo transfer, performed as per routine, the most distal 5-mm portion of the transfer catheter was sterilely placed in a DNA free PCR tube. Next-generation sequencing of the bacteria specific 16S ribosome gene was performed, allowing genus and species calls for microorganisms. Results Taxonomy assignments were made on 35 samples from 33 patients and 2 Escherichia coli controls. Of the 33 patients, 18 had ongoing pregnancies and 15 did not. There were a total of 278 different genus calls present across patient samples. The microbiome at time of transfer for those patients with ongoing pregnancy vs. those without ongoing pregnancy was characterized by top genera by sum fraction. Lactobacillus was the top species call for both outcomes. Conclusions The data presented here show the microbiome at the time of embryo transfer can successfully be characterized without altering standard clinical practice. This novel approach, both in specimen collection and analysis, is the first step toward the goal of determining physiologic from pathophysiologic microbiota. Further studies will help delineate if differences in the microbiome at the time of embryo transfer have a reliable impact on pregnancy outcome.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1058-0468
1573-7330
DOI:10.1007/s10815-015-0614-z