Ovulated oocytes in adult mice derive from non-circulating germ cells

Decades of research in reproductive biology have led to the generally accepted belief that in female mammals, all surviving germ cells enter meiosis at the end of fetal development and as a result, the postnatal ovary harbours a limited supply of oocytes that cannot be replenished or regenerated if...

Full description

Saved in:
Bibliographic Details
Published in:Nature Vol. 441; no. 7097; pp. 1109 - 1114
Main Authors: Jurga, Sara, Min, Irene M, Gosden, Roger, Wagers, Amy J, Eggan, Kevin
Format: Journal Article
Language:English
Published: London Nature Publishing 29-06-2006
Nature Publishing Group
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Decades of research in reproductive biology have led to the generally accepted belief that in female mammals, all surviving germ cells enter meiosis at the end of fetal development and as a result, the postnatal ovary harbours a limited supply of oocytes that cannot be replenished or regenerated if lost to injury or disease. However, recent reports have challenged this view, suggesting instead that oocyte production is maintained through continual seeding of the ovary by circulating, bone-marrow-derived germ cells. To test directly the physiological relevance of circulating cells for female fertility, we established transplantation and parabiotic mouse models to assess the capacity of circulating bone marrow cells to generate ovulated oocytes, both in the steady state and after induced damage. Our studies showed no evidence that bone marrow cells, or any other normally circulating cells, contribute to the formation of mature, ovulated oocytes. Instead, cells that travelled to the ovary through the bloodstream exhibited properties characteristic of committed blood leukocytes.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0028-0836
1476-4687
1476-4679
DOI:10.1038/nature04929