A Multiscale Model Evaluates Screening for Neoplasia in Barrett's Esophagus

Barrett's esophagus (BE) patients are routinely screened for high grade dysplasia (HGD) and esophageal adenocarcinoma (EAC) through endoscopic screening, during which multiple esophageal tissue samples are removed for histological analysis. We propose a computational method called the multistag...

Full description

Saved in:
Bibliographic Details
Published in:PLoS computational biology Vol. 11; no. 5; p. e1004272
Main Authors: Curtius, Kit, Hazelton, William D, Jeon, Jihyoun, Luebeck, E Georg
Format: Journal Article
Language:English
Published: United States Public Library of Science 01-05-2015
Public Library of Science (PLoS)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Barrett's esophagus (BE) patients are routinely screened for high grade dysplasia (HGD) and esophageal adenocarcinoma (EAC) through endoscopic screening, during which multiple esophageal tissue samples are removed for histological analysis. We propose a computational method called the multistage clonal expansion for EAC (MSCE-EAC) screening model that is used for screening BE patients in silico to evaluate the effects of biopsy sampling, diagnostic sensitivity, and treatment on disease burden. Our framework seamlessly integrates relevant cell-level processes during EAC development with a spatial screening process to provide a clinically relevant model for detecting dysplastic and malignant clones within the crypt-structured BE tissue. With this computational approach, we retain spatio-temporal information about small, unobserved tissue lesions in BE that may remain undetected during biopsy-based screening but could be detected with high-resolution imaging. This allows evaluation of the efficacy and sensitivity of current screening protocols to detect neoplasia (dysplasia and early preclinical EAC) in the esophageal lining. We demonstrate the clinical utility of this model by predicting three important clinical outcomes: (1) the probability that small cancers are missed during biopsy-based screening, (2) the potential gains in neoplasia detection probabilities if screening occurred via high-resolution tomographic imaging, and (3) the efficacy of ablative treatments that result in the curative depletion of metaplastic and neoplastic cell populations in BE in terms of the long-term impact on reducing EAC incidence.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conceived and designed the experiments: KC WDH JJ EGL. Performed the experiments: KC WDH. Analyzed the data: KC WDH JJ EGL. Contributed reagents/materials/analysis tools: KC WDH JJ EGL. Wrote the paper: KC WDH EGL.
The authors have declared that no competing interests exist.
ISSN:1553-7358
1553-734X
1553-7358
DOI:10.1371/journal.pcbi.1004272