Ultrafast current imaging by Bayesian inversion
Spectroscopic measurements of current–voltage curves in scanning probe microscopy is the earliest and one of the most common methods for characterizing local energy-dependent electronic properties, providing insight into superconductive, semiconductor, and memristive behaviors. However, the quasista...
Saved in:
Published in: | Nature communications Vol. 9; no. 1; pp. 513 - 11 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
06-02-2018
Nature Publishing Group Nature Portfolio |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Spectroscopic measurements of current–voltage curves in scanning probe microscopy is the earliest and one of the most common methods for characterizing local energy-dependent electronic properties, providing insight into superconductive, semiconductor, and memristive behaviors. However, the quasistatic nature of these measurements renders them extremely slow. Here, we demonstrate a fundamentally new approach for dynamic spectroscopic current imaging via full information capture and Bayesian inference. This general-mode
I
–
V
method allows three orders of magnitude faster measurement rates than presently possible. The technique is demonstrated by acquiring
I
–
V
curves in ferroelectric nanocapacitors, yielding >100,000
I
–
V
curves in <20 min. This allows detection of switching currents in the nanoscale capacitors, as well as determination of the dielectric constant. These experiments show the potential for the use of full information capture and Bayesian inference toward extracting physics from rapid
I
–
V
measurements, and can be used for transport measurements in both atomic force and scanning tunneling microscopy.
Scanning probe microscopy is widely used to characterize material properties with atomic resolution, yet electronic property mapping is normally constrained by slow data acquisition. Somnath et al. show a current–voltage method, which enables fast electronic spectroscopy mapping over micrometer-sized areas. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE Office of Science (SC), Basic Energy Sciences (BES). Materials Sciences & Engineering Division AC05-00OR22725; NRF-2014R1A4A1008474; 51572211 USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR) |
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-017-02455-7 |