Universality of Dicke superradiance in arrays of quantum emitters

Dicke superradiance is an example of emergence of macroscopic quantum coherence via correlated dissipation. Starting from an initially incoherent state, a collection of excited atoms synchronizes as they decay, generating a macroscopic dipole moment and emitting a short and intense pulse of light. W...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications Vol. 13; no. 1; p. 2285
Main Authors: Masson, Stuart J., Asenjo-Garcia, Ana
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 27-04-2022
Nature Publishing Group
Nature Portfolio
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Dicke superradiance is an example of emergence of macroscopic quantum coherence via correlated dissipation. Starting from an initially incoherent state, a collection of excited atoms synchronizes as they decay, generating a macroscopic dipole moment and emitting a short and intense pulse of light. While well understood in cavities, superradiance remains an open problem in extended systems due to the exponential growth of complexity with atom number. Here we show that Dicke superradiance is a universal phenomenon in ordered arrays. We present a theoretical framework – which circumvents the exponential complexity of the problem – that allows us to predict the critical distance beyond which Dicke superradiance disappears. This critical distance is highly dependent on the dimensionality and atom number. Our predictions can be tested in state of the art experiments with arrays of neutral atoms, molecules, and solid-state emitters and pave the way towards understanding the role of many-body decay in quantum simulation, metrology, and lasing. Dicke superradiance is an important collective quantum phenomenon, but its analysis is hindered by the exponential growth of the state space with atom number. Here, the authors develop a theoretical framework that overcomes this, and predict a critical distance below which superradiant decay can be observed in large ordered arrays.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-022-29805-4