Amplitude cancellation influences the association between frequency components in the neural drive to muscle and the rectified EMG signal
The rectified surface EMG signal is commonly used as an estimator of the neural drive to muscles and therefore to infer sources of synaptic input to motor neurons. Loss of EMG amplitude due to the overlap of motor unit action potentials (amplitude cancellation), however, may distort the spectrum of...
Saved in:
Published in: | PLoS computational biology Vol. 15; no. 5; p. e1006985 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Public Library of Science
01-05-2019
Public Library of Science (PLoS) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The rectified surface EMG signal is commonly used as an estimator of the neural drive to muscles and therefore to infer sources of synaptic input to motor neurons. Loss of EMG amplitude due to the overlap of motor unit action potentials (amplitude cancellation), however, may distort the spectrum of the rectified EMG and thereby its correlation with the neural drive. In this study, we investigated the impact of amplitude cancelation on this correlation using analytical derivations and a computational model of motor neuron activity, force, and the EMG signal. First, we demonstrated analytically that an ideal rectified EMG signal without amplitude cancellation (EMGnc) is superior to the actual rectified EMG signal as estimator of the neural drive to muscle. This observation was confirmed by the simulations, as the average coefficient of determination (r2) between the neural drive in the 1-30 Hz band and EMGnc (0.59±0.08) was matched by the correlation between the rectified EMG and the neural drive only when the level of amplitude cancellation was low (<40%) at low contraction levels (<5% of maximum voluntary contraction force; MVC). This correlation, however, decreased linearly with amplitude cancellation (r = -0.83) to values of r2 <0.2 at amplitude cancellation levels >60% (contraction levels >15% MVC). Moreover, the simulations showed that a stronger (i.e. more variable) neural drive implied a stronger correlation between the rectified EMG and the neural drive and that amplitude cancellation distorted this correlation mainly for low-frequency components (<5 Hz) of the neural drive. In conclusion, the results indicate that amplitude cancellation distorts the spectrum of the rectified EMG signal. This implies that valid use of the rectified EMG as an estimator of the neural drive requires low contraction levels and/or strong common synaptic input to the motor neurons. |
---|---|
Bibliography: | new_version ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 The authors have declared that no competing interests exist. |
ISSN: | 1553-7358 1553-734X 1553-7358 |
DOI: | 10.1371/journal.pcbi.1006985 |