St. John’s Wort enhances the synaptic activity of the nucleus of the solitary tract

Abstract Objective St. John’s Wort (SJW) extract, which is commonly used to treat depression, inhibits the reuptake of several neurotransmitters, including glutamate, serotonin, norepinephrine, and dopamine. Glutamatergic visceral vagal afferents synapse upon neurons of the solitary tract (NST); thu...

Full description

Saved in:
Bibliographic Details
Published in:Nutrition (Burbank, Los Angeles County, Calif.) Vol. 30; no. 7; pp. S37 - S42
Main Authors: Vance, Katie M., Ph.D, Ribnicky, David M., Ph.D, Hermann, Gerlinda E., Ph.D, Rogers, Richard C., Ph.D
Format: Journal Article
Language:English
Published: New York, NY Elsevier Inc 01-07-2014
Elsevier
Elsevier Limited
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Objective St. John’s Wort (SJW) extract, which is commonly used to treat depression, inhibits the reuptake of several neurotransmitters, including glutamate, serotonin, norepinephrine, and dopamine. Glutamatergic visceral vagal afferents synapse upon neurons of the solitary tract (NST); thus, the aim of this study was to evaluate whether SJW extract modulates glutamatergic neurotransmission within the NST. Methods We used live cell calcium imaging to evaluate whether SJW and its isolated components hypericin and hyperforin increase the excitability of prelabeled vagal afferent terminals synapsing upon the NST. We used voltage-clamp recordings of spontaneous miniature excitatory postsynaptic currents (mEPSCs) to evaluate whether SJW alters glutamate release from vagal afferents onto NST neurons. Results Our imaging data show that SJW (50 μg/mL) increased the intracellular calcium levels of stimulated vagal afferent terminals compared with the bath control. This increase in presynaptic vagal afferent calcium by the extract coincides with an increase in neurotransmitter release within the nucleus of the solitary tract, as the frequency of mEPSCs is significantly higher in the presence of the extract compared with the control. Finally, our imaging data show that hyperforin, a known component of SJW extract, also significantly increases terminal calcium levels. Conclusion These data suggest that SJW extract can significantly increase the probability of glutamate release from vagal afferents onto the NST by increasing presynaptic calcium. The in vitro vagal afferent synapse with NST neurons is an ideal model system to examine the mechanism of action of botanical agents on glutamatergic neurotransmission.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0899-9007
1873-1244
DOI:10.1016/j.nut.2014.02.008