Jaagsiekte sheep retrovirus pseudotyped lentiviral vector-mediated gene transfer to fetal ovine lung

Viral vector-mediated gene transfer to the postnatal respiratory epithelium has, in general, been of low efficiency due to physical and immunological barriers, non-apical location of cellular receptors critical for viral uptake and limited transduction of resident stem/progenitor cells. These obstac...

Full description

Saved in:
Bibliographic Details
Published in:Gene therapy Vol. 19; no. 2; pp. 201 - 209
Main Authors: Davey, M G, Zoltick, P W, Todorow, C A, Limberis, M P, Ruchelli, E D, Hedrick, H L, Flake, A W
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 01-02-2012
Nature Publishing Group
Subjects:
HIV
AAV
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Viral vector-mediated gene transfer to the postnatal respiratory epithelium has, in general, been of low efficiency due to physical and immunological barriers, non-apical location of cellular receptors critical for viral uptake and limited transduction of resident stem/progenitor cells. These obstacles may be overcome using a prenatal strategy. In this study, HIV-1-based lentiviral vectors (LVs) pseudotyped with the envelope glycoproteins of Jaagsiekte sheep retrovirus (JSRV-LV), baculovirus GP64 (GP64-LV), Ebola Zaire-LV or vesicular stomatitis virus (VSVg-LV) and the adeno-associated virus-2/6.2 (AAV2/6.2) were compared for in utero transfer of a green fluorescent protein (GFP) reporter gene to ovine lung epithelium between days 65 and 78 of gestation. GFP expression was examined on day 85 or 136 of gestation (term is ∼145 days). The percentage of the respiratory epithelial cells expressing GFP in fetal sheep that received the JSRV-LV (3.18 × 10 8 –6.85 × 10 9 viral particles per fetus) was 24.6±0.9% at 3 weeks postinjection (day 85) and 29.9±4.8% at 10 weeks postinjection (day 136). Expression was limited to the surface epithelium lining fetal airways <100 μm internal diameter. Fetal airways were amenable to VSVg-LV transduction, although the percentage of epithelial expression was low (6.6±0.6%) at 1 week postinjection. GP64-LV, Ebola Zaire-LV and AAV2/6.2 failed to transduce the fetal ovine lung under these conditions. These data demonstrate that prenatal lung gene transfer with LV engineered to target apical surface receptors can provide sustained and high levels of transgene expression and support the therapeutic potential of prenatal gene transfer for the treatment of congenital lung diseases.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0969-7128
1476-5462
DOI:10.1038/gt.2011.83