The effect of assimilating satellite-derived soil moisture data in SiBCASA on simulated carbon fluxes in Boreal Eurasia
Boreal Eurasia is a region where the interaction between droughts and the carbon cycle may have significant impacts on the global carbon cycle. Yet the region is extremely data sparse with respect to meteorology, soil moisture, and carbon fluxes as compared to e.g. Europe. To better constrain our ve...
Saved in:
Published in: | Hydrology and earth system sciences Vol. 20; no. 2; pp. 605 - 624 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Katlenburg-Lindau
Copernicus GmbH
03-02-2016
Copernicus Publications |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Boreal Eurasia is a region where the interaction between droughts and the carbon cycle may have significant impacts on the global carbon cycle. Yet the region is extremely data sparse with respect to meteorology, soil moisture, and carbon fluxes as compared to e.g. Europe. To better constrain our vegetation model SiBCASA, we increase data usage by assimilating two streams of satellite-derived soil moisture. We study whether the assimilation improved SiBCASA's soil moisture and its effect on the simulated carbon fluxes. By comparing to unique in situ soil moisture observations, we show that the passive microwave soil moisture product did not improve the soil moisture simulated by SiBCASA, but the active data seem promising in some aspects. The match between SiBCASA and ASCAT soil moisture is best in the summer months over low vegetation. Nevertheless, ASCAT failed to detect the major droughts occurring between 2007 and 2013. The performance of ASCAT soil moisture seems to be particularly sensitive to ponding, rather than to biomass. The effect on the simulated carbon fluxes is large, 5–10 % on annual GPP and TER, tens of percent on local NEE, and 2 % on area-integrated NEE, which is the same order of magnitude as the inter-annual variations. Consequently, this study shows that assimilation of satellite-derived soil moisture has potentially large impacts, while at the same time further research is needed to understand under which conditions the satellite-derived soil moisture improves the simulated soil moisture. |
---|---|
ISSN: | 1607-7938 1027-5606 1607-7938 |
DOI: | 10.5194/hess-20-605-2016 |