Neurotrophic factors in Alzheimer’s disease: role of axonal transport

Neurotrophic factors (NTF) are small, versatile proteins that maintain survival and function to specific neuronal populations. In general, the axonal transport of NTF is important as not all of them are synthesized at the site of its action. Nerve growth factor (NGF), for instance, is produced in th...

Full description

Saved in:
Bibliographic Details
Published in:Genes, brain and behavior Vol. 7; no. s1; pp. 43 - 56
Main Authors: Schindowski, K., Belarbi, K., Buée, L.
Format: Journal Article
Language:English
Published: Oxford, UK Blackwell Publishing Ltd 01-02-2008
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Neurotrophic factors (NTF) are small, versatile proteins that maintain survival and function to specific neuronal populations. In general, the axonal transport of NTF is important as not all of them are synthesized at the site of its action. Nerve growth factor (NGF), for instance, is produced in the neocortex and the hippocampus and then retrogradely transported to the cholinergic neurons of the basal forebrain. Neurodegenerative dementias like Alzheimer’s disease (AD) are linked to deficits in axonal transport. Furthermore, they are also associated with imbalanced distribution and dysregulation of NTF. In particular, brain‐derived neurotrophic factor (BDNF) plays a crucial role in cognition, learning and memory formation by modulating synaptic plasticity and is, therefore, a critical molecule in dementia and neurodegenerative diseases. Here, we review the changes of NTF expression and distribution (NGF, BDNF, neurotrophin‐3, neurotrophin‐4/5 and fibroblast growth factor‐2) and their receptors [tropomyosin‐related kinase (Trk)A, TrkB, TrkC and p75NTR] in AD and AD models. In addition, we focus on the interaction with neuropathological hallmarks Tau/neurofibrillary tangle and amyloid‐β (Abeta)/amyloid plaque pathology and their influence on axonal transport processes in order to unify AD‐specific cholinergic degeneration and Tau and Abeta misfolding through NTF pathophysiology.
Bibliography:Re‐use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-3
ObjectType-Review-1
Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation.
ISSN:1601-1848
1601-183X
DOI:10.1111/j.1601-183X.2007.00378.x