A theoretical framework for Landsat data modeling based on the matrix variate mean-mixture of normal model
This paper introduces a new family of matrix variate distributions based on the mean-mixture of normal (MMN) models. The properties of the new matrix variate family, namely stochastic representation, moments and characteristic function, linear and quadratic forms as well as marginal and conditional...
Saved in:
Published in: | PloS one Vol. 15; no. 4; p. e0230773 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Public Library of Science
09-04-2020
Public Library of Science (PLoS) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper introduces a new family of matrix variate distributions based on the mean-mixture of normal (MMN) models. The properties of the new matrix variate family, namely stochastic representation, moments and characteristic function, linear and quadratic forms as well as marginal and conditional distributions are investigated. Three special cases including the restricted skew-normal, exponentiated MMN and the mixed-Weibull MMN matrix variate distributions are presented and studied. Based on the specific presentation of the proposed model, an EM-type algorithm can be directly implemented for obtaining maximum likelihood estimate of the parameters. The usefulness and practical utility of the proposed methodology are illustrated through two conducted simulation studies and through the Landsat satellite dataset analysis. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Competing Interests: All authors have declared that no competing interests exist. |
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0230773 |