Wall slip heating
When molten plastic is extruded, the upper limiting throughput is often dictated by fine irregular distortions of the extrudate surface. Called sharkskin melt fracture, plastics engineers spike plastics formulations with processing aids to suppress these distortions. Sharkskin melt fracture is not t...
Saved in:
Published in: | Polymer engineering and science Vol. 55; no. 9; pp. 2042 - 2049 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Newtown
Blackwell Publishing Ltd
01-09-2015
Society of Plastics Engineers, Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | When molten plastic is extruded, the upper limiting throughput is often dictated by fine irregular distortions of the extrudate surface. Called sharkskin melt fracture, plastics engineers spike plastics formulations with processing aids to suppress these distortions. Sharkskin melt fracture is not to be confused with gross melt fracture, a larger scale distortion arising at throughputs higher than the critical throughput for sharkskin melt fracture. Sharkskin melt fracture has been attributed to a breakdown of the no slip boundary condition in the extrusion die, that is, adhesive failure at the die walls, where the fluid moves with respect to the wall. In this article, we account for the frictional heating at the wall, which we call slip heating. We focus on slit flow, which is used in film casting, sheet extrusion, curtain coating, and when curvature can be neglected, slit flow is easily extended to pipe extrusion and film blowing. In slit flow, the magnitude of the heat flux from the slipping interface is the product of the shear stress and the slip speed. We present the solutions for the temperature rise in pressure‐driven slit flow and simple shearing flow, each subject to constant heat generation at the adhesive slip interface, with and without viscous dissipation in the bulk fluid. We solve the energy equation in Cartesian coordinates for the temperature rise, for steady temperature profiles. For this simplest relevant nonisothermal model, we neglect convective heat transfer in the melt and use a constant viscosity. We arrive at a necessary dimensionless condition for the accurate use of our results: Pé≪1. We find that slip heating can raise the melt temperature significantly, as can viscous dissipation in the bulk. We conclude with two worked examples showing the relevance of slip heating in determining wall temperature rise, and we show how to correct wall slip data for this temperature rise. POLYM. ENG. SCI., 55:2042–2049, 2015. © 2014 Society of Plastics Engineers |
---|---|
Bibliography: | istex:69BFEC9AA26960883CC5AF854D9363B1B2222EA6 ArticleID:PEN24046 Research Initiation Grant (RIG) (A.J.G.) Faculty of Applied Science and Engineering of Queen's University at Kingston; Canada Research Chairs program of the Government of Canada through the Tier 1 Canada Research Chair in Rheology ark:/67375/WNG-MJKHFL2X-R ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0032-3888 1548-2634 |
DOI: | 10.1002/pen.24046 |