Binding of extracellular matrix molecules by probiotic bacteria

Aims: The aim of this study was to investigate extracellular matrix (ECM) and mucin binding of selected bacterial isolates with probiotic features in comparison with commercially used probiotic bacteria. Methods and Results: ECM molecules were immobilized in microtitre plates (mucin and fetuin) or o...

Full description

Saved in:
Bibliographic Details
Published in:Letters in applied microbiology Vol. 37; no. 4; pp. 329 - 333
Main Authors: Štyriak, I., Nemcová, R., Chang, Y.‐H., Ljungh, Å.
Format: Journal Article
Language:English
Published: Oxford, UK Blackwell Science Ltd 01-01-2003
Blackwell Science
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Aims: The aim of this study was to investigate extracellular matrix (ECM) and mucin binding of selected bacterial isolates with probiotic features in comparison with commercially used probiotic bacteria. Methods and Results: ECM molecules were immobilized in microtitre plates (mucin and fetuin) or on the surface of latex beads. Porcine mucin was bound by all 13 probiotic strains tested with important inter‐strain differences; however, fetuin binding was similar (weak) for all 14 strains tested. Strongly positive (three) binding of bovine fibrinogen was expressed by strains from fermented food (Lactobacillus rhamnosus GG, L. casei Shirota and L. johnsonii La1) as well as by L. casei L.c., Lactobacillus sp. 2I3 and by L. plantarum LP. The other strains expressed moderate (2) or weakly positive (1) binding of bovine fibrinogen. Strongly positive (3) binding of porcine fibronectin was observed only with two strains; however, all other strains also bound this molecule. Bovine lactoferrin was bound to a higher extent than transferrins. Significance and Impact of the Study: Some animal strains (at least L. casei L.c. and Lactobacillus sp. 2I3) are comparable with the commercially used strains with respect to their ECM binding ability. As this feature is important for probiotic bacteria to be able to colonize intestine, these strains should be considered for their wider use in fermented feed (or probiotic preparations) for animals.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0266-8254
1472-765X
1365-2673
DOI:10.1046/j.1472-765X.2003.01402.x