Majorana zero modes in impurity-assisted vortex of LiFeAs superconductor

The iron-based superconductor is emerging as a promising platform for Majorana zero mode, which can be used to implement topological quantum computation. One of the most significant advances of this platform is the appearance of large vortex level spacing that strongly protects Majorana zero mode fr...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications Vol. 12; no. 1; p. 4146
Main Authors: Kong, Lingyuan, Cao, Lu, Zhu, Shiyu, Papaj, Michał, Dai, Guangyang, Li, Geng, Fan, Peng, Liu, Wenyao, Yang, Fazhi, Wang, Xiancheng, Du, Shixuan, Jin, Changqing, Fu, Liang, Gao, Hong-Jun, Ding, Hong
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 06-07-2021
Nature Publishing Group
Nature Portfolio
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The iron-based superconductor is emerging as a promising platform for Majorana zero mode, which can be used to implement topological quantum computation. One of the most significant advances of this platform is the appearance of large vortex level spacing that strongly protects Majorana zero mode from other low-lying quasiparticles. Despite the advantages in the context of physics research, the inhomogeneity of various aspects hampers the practical construction of topological qubits in the compounds studied so far. Here we show that the stoichiometric superconductor LiFeAs is a good candidate to overcome this obstacle. By using scanning tunneling microscopy, we discover that the Majorana zero modes, which are absent on the natural clean surface, can appear in vortices influenced by native impurities. Our detailed analysis reveals a new mechanism for the emergence of those Majorana zero modes, i.e. native tuning of bulk Dirac fermions. The discovery of Majorana zero modes in this homogeneous material, with a promise of tunability, offers an ideal material platform for manipulating and braiding Majorana zero modes, pushing one step forward towards topological quantum computation. Despite the discovery of Majorana zero modes (MZM) in iron-based superconductors, sample inhomogeneity may destroy MZMs during braiding. Here, authors observe MZM in impurity-assisted vortices due to tuning of the bulk Dirac fermions in a homogeneous superconductor LiFeAs.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE Office of Science (SC), Basic Energy Sciences (BES). Materials Sciences & Engineering Division
SC0019275
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-24372-6