Physiological basis for the high salt tolerance of Debaryomyces hansenii

The effects of KCl, NaCl, and LiCl on the growth of Debaryomyces hansenii, usually considered a halotolerant yeast, and Saccharomyces cerevisiae were compared. KCl and NaCl had similar effects on D. hansenii, indicating that NaCl created only osmotic stress, while LiCl had a specific inhibitory effe...

Full description

Saved in:
Bibliographic Details
Published in:Applied and Environmental Microbiology Vol. 63; no. 10; pp. 4005 - 4009
Main Authors: Prista, C, Almagro, A, Loureiro-Dias, M.C, Ramos, J
Format: Journal Article
Language:English
Published: Washington, DC American Society for Microbiology 01-10-1997
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The effects of KCl, NaCl, and LiCl on the growth of Debaryomyces hansenii, usually considered a halotolerant yeast, and Saccharomyces cerevisiae were compared. KCl and NaCl had similar effects on D. hansenii, indicating that NaCl created only osmotic stress, while LiCl had a specific inhibitory effect, although relatively weaker than in S. cerevisiae. In media with low K+, Na+ was able to substitute for K+, restoring the specific growth rate and the final biomass of the culture. The intracellular concentration of Na+ reached values up to 800 mM, suggesting that metabolism is not affected by rather high concentrations of salt. The ability of D. hansenii to extrude Na+ and Li+ was similar to that described for S. cerevisiae, suggesting that this mechanism is not responsible for the increased halotolerance. Also, the kinetic parameters of Rb+ uptake in D. hansenii (Vmax, 4.2 nmol mg [dry weight]-1 min-1; Km, 7.4 mM) indicate that the transport system was not more efficient than in S. cerevisiae. Sodium (50 mM) activated the transport of Rb+ by increasing the affinity for the substrate in D. hansenii, while the effect was opposite in S. cerevisiae. Lithium inhibited Rb+ uptake in D. hansenii. We propose that the metabolism of D. hansenii is less sensitive to intracellular Na+ than is that of S. cerevisiae, that Na+ substitutes for K+ when K+ is scarce, and that the transport of K+ is favored by the presence of Na+. In low K+ environments, D. hansenii behaved as a halophilic yeast
Bibliography:F60
Q03
1997063083
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0099-2240
1098-5336
DOI:10.1128/AEM.63.10.4005-4009.1997