Ambient fine and coarse particles in Japan affect nasal and bronchial epithelial cells differently and elicit varying immune response
Ambient particulate matter (PM) epidemiologically exacerbates respiratory and immune health, including allergic rhinitis (AR) and bronchial asthma (BA). Although fine and coarse particles can affect respiratory tract, the differences in their effects on the upper and lower respiratory tract and immu...
Saved in:
Published in: | Environmental pollution (1987) Vol. 242; no. Pt B; pp. 1693 - 1701 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
Elsevier Ltd
01-11-2018
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ambient particulate matter (PM) epidemiologically exacerbates respiratory and immune health, including allergic rhinitis (AR) and bronchial asthma (BA). Although fine and coarse particles can affect respiratory tract, the differences in their effects on the upper and lower respiratory tract and immune system, their underlying mechanism, and the components responsible for the adverse health effects have not been yet completely elucidated. In this study, ambient fine and coarse particles were collected at three different locations in Japan by cyclone technique. Both particles collected at all locations decreased the viability of nasal epithelial cells and antigen presenting cells (APCs), increased the production of IL-6, IL-8, and IL-1β from bronchial epithelial cells and APCs, and induced expression of dendritic and epithelial cell (DEC) 205 on APCs. Differences in inflammatory responses, but not in cytotoxicity, were shown between both particles, and among three locations. Some components such as Ti, Co, Zn, Pb, As, OC (organic carbon) and EC (elemental carbon) showed significant correlations to inflammatory responses or cytotoxicity. These results suggest that ambient fine and coarse particles differently affect nasal and bronchial epithelial cells and immune response, which may depend on particles size diameter, chemical composition and source related particles types.
[Display omitted]
•Cyclone technique is an efficient technique for particle sampling.•Investigated ambient particles affected cell viability and inflammation.•Investigated ambient particles induced surface expression of mouse dendritic cell.•Biological responses depend on particles size, chemical composition and locations.
We showed for the first time in the world that ambient fine and coarse particles collected from Japan by the new technique using cyclone have different effects on the epithelium cells of the upper and lower respiratory tract and elicit varying immune response, which may depend on particles size diameter, chemical composition and source related particles types. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0269-7491 1873-6424 |
DOI: | 10.1016/j.envpol.2018.07.103 |