Polar patterning of the spikelet is disrupted in the two opposite lemma mutant in rice
Angiosperms produce diverse flowers and the pattern of floral symmetry is a major factor for flower diversification. Bilaterally symmetric flowers have evolved multiple times in different angiosperm lineages from radially symmetric ancestors. Whereas most monocots produce radially symmetric flowers,...
Saved in:
Published in: | Genes & Genetic Systems Vol. 91; no. 4; pp. 193 - 200 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Japan
The Genetics Society of Japan
01-08-2016
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Angiosperms produce diverse flowers and the pattern of floral symmetry is a major factor for flower diversification. Bilaterally symmetric flowers have evolved multiple times in different angiosperm lineages from radially symmetric ancestors. Whereas most monocots produce radially symmetric flowers, grasses such as rice (Oryza sativa) and maize (Zea mays) generate bilaterally symmetric flowers and spikelets. In this paper, we focused on the two opposite lemma (tol) mutant, which displays a pleiotropic phenotype in the spikelet. Close morphological examination revealed that a typical spikelet phenotype of the tol mutant was principally based on the mirror image duplication of the lemma-side half of the spikelet. Other spikelet phenotypes can be explained as the derivation from the spikelet with this duplication. A polar pattern of organ formation along the lemma-palea axis was disrupted by this duplication. Accordingly, tol mutation seems to change the spikelet from bilateral symmetry (monosymmetry) to disymmetry. Thus, the tol mutant provides good genetic material to investigate the regulation of spikelet symmetry in rice. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1341-7568 1880-5779 |
DOI: | 10.1266/ggs.16-00014 |