Macroscopic Hierarchical Surface Patterning of Porphyrin Trimers via Self-Assembly and Dewetting
The use of bottom-up approaches to construct patterned surfaces for technological applications is appealing, but to date is applicable to only relatively small areas (~10 square micrometers). We constructed highly periodic patterns at macroscopic length scales, in the range of square millimeters, by...
Saved in:
Published in: | Science (American Association for the Advancement of Science) Vol. 314; no. 5804; pp. 1433 - 1436 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Washington, DC
American Association for the Advancement of Science
01-12-2006
The American Association for the Advancement of Science |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The use of bottom-up approaches to construct patterned surfaces for technological applications is appealing, but to date is applicable to only relatively small areas (~10 square micrometers). We constructed highly periodic patterns at macroscopic length scales, in the range of square millimeters, by combining self-assembly of disk-like porphyrin dyes with physical dewetting phenomena. The patterns consisted of equidistant 5-nanometer-wide lines spaced 0.5 to 1 micrometers apart, forming single porphyrin stacks containing millions of molecules, and were formed spontaneously upon drop-casting a solution of the molecules onto a mica surface. On glass, thicker lines are formed, which can be used to align liquid crystals in large domains of square millimeter size. |
---|---|
Bibliography: | http://www.scienceonline.org/ ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0036-8075 1095-9203 |
DOI: | 10.1126/science.1133004 |