Outer Radiation Belt Dropout Dynamics Following the Arrival of Two Interplanetary Coronal Mass Ejections

Magnetopause shadowing and wave-particle interactions are recognized as the two primary mechanisms for losses of electrons from the outer radiation belt. We investigate these mechanisms, sing satellite observations both in interplanetary space and within the magnetosphere and particle drift modeling...

Full description

Saved in:
Bibliographic Details
Published in:Geophysical research letters Vol. 43; no. 3; pp. 978 - 987
Main Authors: Alves, L. R., Da Silva, L. A., Souza, V. M., Sibeck, D. G., Jauer, P. R., Vieira, L. E. A., Walsh, B. M., Silveira, M. V. D., Marchezi, J. P., Rockenbach, M., Del Lago, A., Mendes, O., Tsurutani, B. T., Koga, D., Kanekal, S. G., Baker, D. N., Wygant, J. R., Kletzing, C. A.
Format: Journal Article
Language:English
Published: Goddard Space Flight Center AGU 16-02-2016
John Wiley & Sons, Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Magnetopause shadowing and wave-particle interactions are recognized as the two primary mechanisms for losses of electrons from the outer radiation belt. We investigate these mechanisms, sing satellite observations both in interplanetary space and within the magnetosphere and particle drift modeling. Two interplanetary shocks sheaths impinged upon the magnetopause causing a relativistic electron flux dropout. The magnetic cloud (C) and interplanetary structure sunward of the MC had primarily northward magnetic field, perhaps leading to a concomitant lack of substorm activity and a 10 day long quiescent period. The arrival of two shocks caused an unusual electron flux dropout. Test-particle simulations have shown 2 to 5 MeV energy, equatorially mirroring electrons with initial values of L 5.5can be lost to the magnetosheath via magnetopause shadowing alone. For electron losses at lower L-shells, coherent chorus wave-driven pitch angle scattering and ULF wave-driven radial transport have been shownto be viable mechanisms.
Bibliography:GSFC
Goddard Space Flight Center
GSFC-E-DAA-TN40936
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0094-8276
1944-8007
DOI:10.1002/2015GL067066