Aquaporin 7 involved in GINSENOSIDE-RB1-mediated anti-obesity via peroxisome proliferator-activated receptor gamma pathway

Obesity, characterized by the excessive accumulation of triglycerides in adipocytes and their decreased excretion from adipocytes, is closely related to various health problems. Ginsenoside Rb1 (Rb1), the most active component of the traditional Chinese medicine ginseng, has been reported to have po...

Full description

Saved in:
Bibliographic Details
Published in:Nutrition & metabolism Vol. 17; no. 1; p. 69
Main Authors: Guo, Rong, Wang, Lei, Zeng, Xianqin, Liu, Minghao, Zhou, Peng, Lu, Huixia, Lin, Huili, Dong, Mei
Format: Journal Article
Language:English
Published: England BioMed Central Ltd 17-08-2020
BioMed Central
BMC
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Obesity, characterized by the excessive accumulation of triglycerides in adipocytes and their decreased excretion from adipocytes, is closely related to various health problems. Ginsenoside Rb1 (Rb1), the most active component of the traditional Chinese medicine ginseng, has been reported to have positive effects on lipid metabolism. The aim of the present study was to determine the protective effects of Rb1 on glycolipid metabolism under obesity conditions and its mechanisms and to reveal the signaling pathways involved. In our study, male C57BL/6 mice with obesity induced by a high-fat diet (HFD) and mature 3 T3-L1 adipocytes were used to investigate the role of Rb1 in lipid accumulation and explore its possible molecular mechanism in vivo and in vitro, respectively. Rb1 reduced the body weight, fat mass, adipocytes size and serum free fatty acid (FFA) concentration of obese mice. In differentiated 3 T3-L1 adipocytes, Rb1 reduced the accumulation of lipid droplets and stimulated output of triglycerides. Additionally, the expression of peroxisome proliferator-activated receptor gamma (PPARγ), phosphorylated PPARγ (Ser112) and aquaporin 7 (AQP7) was upregulated in adipocytes and adipose tissues upon Rb1 treatment. However, intervention of GW9662, PPARγ antagonist, attenuated Rb1-mediated effects on glycolipid metabolism and AQP7 levels. These data indicated that Rb1 reduced body weight and improved glycolipid metabolism by upregulating PPARγ and AQP7 protein levels. Our study indicated a potential role for Rb1 in the prevention and treatment of obesity.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1743-7075
1743-7075
DOI:10.1186/s12986-020-00490-8