PrimedSherlock: a tool for rapid design of highly specific CRISPR-Cas12 crRNAs
CRISPR-Cas based diagnostic assays provide a portable solution which bridges the benefits of qRT-PCR and serological assays in terms of portability, specificity and ease of use. CRISPR-Cas assays are rapidly fieldable, specific and have been rigorously validated against a number of targets, includin...
Saved in:
Published in: | BMC bioinformatics Vol. 23; no. 1; p. 428 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
England
BioMed Central Ltd
14-10-2022
BioMed Central BMC |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | CRISPR-Cas based diagnostic assays provide a portable solution which bridges the benefits of qRT-PCR and serological assays in terms of portability, specificity and ease of use. CRISPR-Cas assays are rapidly fieldable, specific and have been rigorously validated against a number of targets, including HIV and vector-borne pathogens. Recently, CRISPR-Cas12 and CRISPR-Cas13 diagnostic assays have been granted FDA approval for the detection of SARS-CoV-2. A critical step in utilizing this technology requires the design of highly-specific and efficient CRISPR RNAs (crRNAs) and isothermal primers. This process involves intensive manual curation and stringent parameters for design in order to minimize off-target detection while also preserving detection across divergent strains. As such, a single, streamlined bioinformatics platform for rapidly designing crRNAs for use with the CRISPR-Cas12 platform is needed. Here we offer PrimedSherlock, an automated, computer guided process for selecting highly-specific crRNAs and primers for targets of interest.
Utilizing PrimedSherlock and publicly available databases, crRNAs were designed against a selection of Flavivirus genomes, including West Nile, Zika and all four serotypes of Dengue. Using outputs from PrimedSherlock in concert with both wildtype A.s Cas12a and Alt-R Cas12a Ultra nucleases, we demonstrated sensitive detection of nucleic acids of each respective arbovirus in in-vitro fluorescence assays. Moreover, primer and crRNA combinations facilitated the detection of their intended targets with minimal off-target background noise.
PrimedSherlock is a novel crRNA design tool, specific for CRISPR-Cas12 diagnostic platforms. It allows for the rapid identification of highly conserved crRNA targets from user-provided primer pairs or PrimedRPA output files. Initial testing of crRNAs against arboviruses of medical importance demonstrated a robust ability to distinguish multiple strains by exploiting polymorphisms within otherwise highly conserved genomic regions. As a freely-accessible software package, PrimedSherlock could significantly increase the efficiency of CRISPR-Cas12 diagnostics. Conceptually, the portability of detection kits could also be enhanced when coupled with isothermal amplification technologies. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1471-2105 1471-2105 |
DOI: | 10.1186/s12859-022-04968-5 |