The Down Syndrome Critical Region Protein RCAN1 Regulates Long-Term Potentiation and Memory via Inhibition of Phosphatase Signaling

Regulator of calcineurin 1 (RCAN1/MCIP1/DSCR1) regulates the calmodulin-dependent phosphatase calcineurin. Because it is located on human chromosome 21, RCAN1 has been postulated to contribute to mental retardation in Down syndrome and has been reported to be associated with neuronal degeneration in...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of neuroscience Vol. 27; no. 48; pp. 13161 - 13172
Main Authors: Hoeffer, Charles A, Dey, Asim, Sachan, Nita, Wong, Helen, Patterson, Richard J, Shelton, John M, Richardson, James A, Klann, Eric, Rothermel, Beverly A
Format: Journal Article
Language:English
Published: United States Soc Neuroscience 28-11-2007
Society for Neuroscience
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Regulator of calcineurin 1 (RCAN1/MCIP1/DSCR1) regulates the calmodulin-dependent phosphatase calcineurin. Because it is located on human chromosome 21, RCAN1 has been postulated to contribute to mental retardation in Down syndrome and has been reported to be associated with neuronal degeneration in Alzheimer's disease. The studies herein are the first to assess the role of RCAN1 in memory and synaptic plasticity by examining the behavioral and electrophysiological properties of RCAN1 knock-out mice. These mice exhibit deficits in spatial learning and memory, reduced associative cued memory, and impaired late-phase long-term potentiation (L-LTP), phenotypes similar to those of transgenic mice with increased calcineurin activity. Consistent with this, the RCAN1 knock-out mice display increased enzymatic calcineurin activity, increased abundance of a cleaved calcineurin fragment, and decreased phosphorylation of the calcineurin substrate dopamine and cAMP-regulated phosphoprotein-32. We propose a model in which RCAN1 plays a positive role in L-LTP and memory by constraining phosphatase signaling.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0270-6474
1529-2401
DOI:10.1523/JNEUROSCI.3974-07.2007