En bloc spondylectomy reconstructions in a biomechanical in-vitro study
Wide surgical margins make en bloc spondylectomy and stabilization a referred treatment for certain tumoral lesions. With a total resection of a vertebra, the removal of the segment’s stabilizing structures is complete and the instrumentation guidelines derived from a thoracolumbar corpectomy may no...
Saved in:
Published in: | European spine journal Vol. 17; no. 5; pp. 715 - 725 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Berlin/Heidelberg
Springer-Verlag
01-05-2008
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Wide surgical margins make en bloc spondylectomy and stabilization a referred treatment for certain tumoral lesions. With a total resection of a vertebra, the removal of the segment’s stabilizing structures is complete and the instrumentation guidelines derived from a thoracolumbar corpectomy may not apply. The influence of one or two adjacent segment instrumentation, adjunct anterior plate stabilization and vertebral body replacement (VBR) designs on post-implantational stability was investigated in an in-vitro en bloc spondylectomy model. Biomechanical in-vitro testing was performed in a six degrees of freedom spine simulator using six human thoracolumbar spinal specimens with an age at death of 64 (±20) years. Following en bloc spondylectomy eight stabilization techniques were performed using long and short posterior instrumentation, two VBR systems [(1) an expandable titanium cage; (2) a connected long carbon fiber reinforced composite VBR pedicle screw system)] and an adjunct anterior plate. Test-sequences were loaded with pure moments (±7.5 Nm) in the three planes of motion. Intersegmental motion was measured between Th12 and L2, using an ultrasound based analysis system. In flexion/extension, long posterior fixations showed significantly less range of motion (ROM) than the short posterior fixations. In axial rotation and extension, the ROM of short posterior fixation was equivalent or higher when compared to the intact state. There were only small, nonsignificant ROM differences between the long carbon fiber VBR and the expandable system. Antero-lateral plating stabilized short posterior fixations, but did not markedly effect long construct stability. Following thoracolumbar en bloc spondylectomy, it is the posterior fixation of more than one adjacent segment that determines stability. In contrast, short posterior fixation does not sufficiently restore stability, even with an antero-lateral plate. Expandable verses nonexpandable VBR system design does not markedly affect stability. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0940-6719 1432-0932 |
DOI: | 10.1007/s00586-008-0588-y |