Exploiting sequence labeling framework to extract document-level relations from biomedical texts
Both intra- and inter-sentential semantic relations in biomedical texts provide valuable information for biomedical research. However, most existing methods either focus on extracting intra-sentential relations and ignore inter-sentential ones or fail to extract inter-sentential relations accurately...
Saved in:
Published in: | BMC bioinformatics Vol. 21; no. 1; p. 125 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
BioMed Central Ltd
27-03-2020
BioMed Central BMC |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Both intra- and inter-sentential semantic relations in biomedical texts provide valuable information for biomedical research. However, most existing methods either focus on extracting intra-sentential relations and ignore inter-sentential ones or fail to extract inter-sentential relations accurately and regard the instances containing entity relations as being independent, which neglects the interactions between relations. We propose a novel sequence labeling-based biomedical relation extraction method named Bio-Seq. In the method, sequence labeling framework is extended by multiple specified feature extractors so as to facilitate the feature extractions at different levels, especially at the inter-sentential level. Besides, the sequence labeling framework enables Bio-Seq to take advantage of the interactions between relations, and thus, further improves the precision of document-level relation extraction.
Our proposed method obtained an F1-score of 63.5% on BioCreative V chemical disease relation corpus, and an F1-score of 54.4% on inter-sentential relations, which was 10.5% better than the document-level classification baseline. Also, our method achieved an F1-score of 85.1% on n2c2-ADE sub-dataset.
Sequence labeling method can be successfully used to extract document-level relations, especially for boosting the performance on inter-sentential relation extraction. Our work can facilitate the research on document-level biomedical text mining. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1471-2105 1471-2105 |
DOI: | 10.1186/s12859-020-3457-2 |